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O
n January 8, 2007, just before 9 in
the morning, a computer finished writ-
ing to disk about sixty gigabytes of
files containing the Kazhdan-Lusztig
polynomials for the split real group

G of type E8. Values at 1 of these polynomials
are coefficients in characters of irreducible repre-
sentations of G; so all irreducible characters were
written down. The biggest coefficient appearing
was 11,808,808, in the polynomial

152q22 + 3472q21 + 38791q20 + 293021q19

+1370892q18 + 4067059q17 + 7964012q16

+11159003q15 + 11808808q14 + 9859915q13

+6778956q12 + 3964369q11 + 2015441q10

+906567q9 + 363611q8 + 129820q7

+41239q6 + 11426q5 + 2677q4

+492q3 + 61q2 + 3q.

Its value at 1 is 60,779,787.
This calculation is part of a larger project

called the atlas of Lie groups and repre-
sentations. In this article I’ll try to explain the
atlas project, what Kazhdan-Lusztig polynomials
are, why one might care about them, and some-
thing about the nature of this calculation and the
calculators.

David Vogan is professor of mathematics at the Mas-
sachusetts Institute of Technology. His email address is
dav@math.mit.edu. Supported in part by NSF FRG grant
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What’s E8?
A Lie group is a group endowed with the structure
of a smooth manifold, in such a way that group
multiplication and inversion are smooth maps.
Every finite group is a Lie group: the manifold
structure is just the zero-dimensional discrete
structure. For that reason the study of Lie groups
is necessarily more complicated than the study
of finite groups. But it’s not unreasonable to
concentrate on connected Lie groups. If you do
that, a miracle happens: connected Lie groups are
less complicated than finite groups. The reason is
that a connected Lie group is almost completely
determined by its Lie algebra. The Lie algebra is the
tangent space to the group manifold at the identity
element, endowed with a nonassociative product
called the Lie bracket. Since the Lie algebra is a
finite-dimensional vector space, it can be studied
using linear algebra ideas. A typical method is to
look at one element X of the Lie algebra, and to
regard “Lie bracket with X” as a linear transfor-
mation from the Lie algebra to itself. This linear
transformation has eigenvalues and eigenvectors,
and those invariants can be used to describe the
structure of the Lie algebra.

Just as finite groups are successive extensions
of nonabelian simple groups (and Z/pZ), connected
Lie groups are successive extensions of connected
simple Lie groups (and the additive group R). Many
questions about general Lie groups can be reduced
to the case of connected simple Lie groups, and
so to questions about simple Lie algebras over the
real numbers.

Many algebra problems are easier over alge-
braically closed fields, so it’s natural to relate Lie
algebras over R to Lie algebras over C. If k ⊂ K is
any field extension, an n-dimensional Lie algebra
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gk over the small field k gives rise naturally to an
n-dimensional Lie algebra gK = gk ⊗k K over the
large field K. The algebra gk is called a k-form of
gK . We can study real Lie algebras by first studying
complex Lie algebras, and then studying their real
forms.

Wilhelm Killing in 1887 was able to classify
simple Lie algebras over the complex numbers. He
found four infinite families of classical Lie algebras
An, Bn, Cn, andDn; and five exceptional Lie algebras
G2, F4, E6, E7, and E8. Each of these complex Lie
algebras has a finite number of real forms; the real
forms were described completely by Élie Cartan in
the 1890s.

In each case there are two distinguished real
forms: the compact real form, for which the cor-
responding Lie group is compact, and the split
real form. The term “split” refers to factorization
of certain characteristic polynomials. The split
form has the property that there is an open set
of Lie algebra elements X for which the linear
transformation of Lie bracket with X has only real
eigenvalues. If one works with simple Lie algebras
over other fields, there is always an analogue of
the split form. The compact form is special to the
real field.

The Lie groups attached to classical Lie algebras
are all related to classical linear algebra and ge-
ometry. A real Lie group of type Bn, for instance,
is the group of linear transformations of R2n+1

preserving a nondegenerate quadratic form. These
groups were already known in Lie’s work, and in
some sense they go back even to Euclid.

The great surprise in Killing’s work was his
discovery of the exceptional Lie algebras: five
simple Lie algebras (of dimensions 14, 52, 78, 133,
and 248) having no straightforward connection to
classical geometry. Work in the twentieth century
on the classification of finite simple groups shows
that we should be delighted with such a short and
tractable list of exceptions.

The atlas project is aimed at understanding the
structure and representation theory of Lie groups.
Each member of the project has a slightly different
idea about what “understanding” means. Certainly
it should include a thorough understanding of the
exceptional groups.

There is an aesthetic in this subject according
to which the best proof is one not referring to
the Cartan-Killing classification. In practice, such a
proof may be difficult to find. One of the most fun-
damental results is Cartan and Weyl’s description
of the finite-dimensional irreducible representa-
tions of a connected Lie group. This theorem
was first proved in the 1930s using explicit con-
structions of representations of simple Lie groups,
given separately in each case of the classification.
Only twenty years later did Harish-Chandra give
a construction independent of the classification.
Even today, when Harish-Chandra’s approach is

well established as the “right” way to present the
theory, the older explicit constructions continue
to be a powerful tool.

What we are seeking is an understanding of
Lie groups and (infinite-dimensional) representa-
tions of this aesthetically inferior sort: one that
for the exceptional groups in particular may rely
on explicit calculations. Always our goal is to
find formulations of results that are as clean and
simple and general as possible; but we allow for
the possibility of verifying some results by long
computations. The calculation we have done for E8

is certainly long. I will say a few words in the last
section about the kind of clean and simple results
we are extracting from it.

A general warning about mathematical precision.
I have tried to make the mathematical statements
convey accurately our level of understanding; but I
have deliberately omitted or obscured many impor-
tant details. (Here is an example. In equation (D)
below, I say that Harish-Chandra found a basis for
the solutions of a system of differential equations.
When certain eigenvalues for the system are zero,
Harish-Chandra did not find all the solutions. The
ones that he found suffice for the expression
of irreducible characters: equation (E) remains
true.) Undoubtedly the number of unintentional
obscurities and omissions is equally large. For both
categories, I apologize in advance.

The level of historical precision is perhaps even
lower. I have omitted reference to many mathe-
maticians whose work played a crucial role in the
developments reported here. For these omissions I
will not attempt to give an illustrative example but
I will again apologize.

Unitary Representations and Their
Disreputable Cousins
A unitary representation of a topological group
G is a continuous action of G by automorphisms
of a Hilbert space (preserving the inner product).
Another way to say this is that a unitary repre-
sentation is a realization of G as symmetries of a
(possibly infinite-dimensional) Euclidean geometry.
Because Hilbert spaces are the basic objects of
quantum mechanics, one can also say that a unitary
representation is a realization of G as symmetries
of a quantum-mechanical system. A unitary repre-
sentation is called irreducible if the Hilbert space
has exactly two closed G-stable subspaces.

Because so many function spaces are closely
related to Hilbert spaces, unitary representations
are a fundamental tool for understanding ac-
tions of topological groups. To prepare this tool
for use, we seek to understand arbitrary unitary
representations of arbitrary topological groups.

An arbitrary unitary representation can often
be written as a direct integral of irreducible uni-
tary representations. The notion of direct integral

October 2007 Notices of the AMS 1023



extends that of direct sum. If T is the unit circle,
the Hilbert space L2(T) has a direct sum decom-
position L2(T) =

∑
n∈Z C · einθ given by Fourier

series. The Hilbert space L2(R) has a direct integral
decomposition L2(R) =

∫
ξ∈R C · eixξdξ given by the

Fourier transform.
There is an extremely general theorem guaran-

teeing existence of a direct integral decomposition
into irreducible representations: it suffices that
the topological group have a countable dense
subset. There are moderately general theorems
guaranteeing uniqueness of direct integral decom-
positions. This uniqueness holds (for example)
for all algebraic Lie groups—subgroups of n × n
matrices defined by polynomial equations in the
matrix entries. We therefore seek to understand
irreducible unitary representations for algebraic
Lie groups.

Work begun by George Mackey and complet-
ed by Michel Duflo describes irreducible unitary
representations of algebraic Lie groups by a very
concrete and explicit reduction to the case of
reductive algebraic groups. (These are essentially
direct products of simple and abelian Lie groups.)
One of the goals of the atlas project is this:

to describe the set Πu(G) of irreducible unitary
representations of each reductive algebraic Lie
group G.

Since we haven’t yet reached this goal, we want to
identify steps that represent progress towards it.

Harish-Chandra in the 1950s, following a sugges-
tion of Chevalley, began to study the larger class of
irreducible representations that are not necessarily
unitary. A representation of a topological group
G means a continuous action of G on a complete
locally convex topological vector space. We may
write it as a group homomorphism

π : G → Aut(Vπ),

withVπ the vector space. We say thatπ is irreducible
if Vπ has exactly two closed invariant subspaces.
The study of irreducible representations in general
is complicated by the existence of invertible linear
operators on infinite-dimensional Banach spaces
having no nontrivial closed invariant subspaces.
Such operators define irreducible representations
of the group Z, but they have little to do with most
problems of harmonic analysis. Harish-Chandra
found a natural technical condition called quasisim-
plicity on irreducible representations of reductive
Lie groups that excludes such pathological behav-
ior. (The condition is that all operators commuting
with the representation are assumed to be scalar.
In the case of unitary irreducible representations,
quasisimplicity is the theorem called Schur’s Lem-
ma.) If G is any reductive algebraic Lie group, we
defineΠq(G) = equivalence classes of irreducible

quasisimple representations of G.

(The correct notion of equivalence—Harish-
Chandra’sinfinitesimal equivalence—isabitsubtle,
and involves unbounded operators. That causes
difficulties with making precise statements in the
rest of this section, but nothing insurmountable.)
Quasisimple representations turn out to be easier
to describe than unitary representations.

What is the relation to the original problem
of describing unitary representations? A unitary
representation is automatically quasisimple, so we
want to understand when a quasisimple irreducible
representation is actually unitary. That is, we want
to know whether Vπ admits a G-invariant Hilbert
space structure. This question can be broken into
two parts: whether there is a G-invariant Hermitian
form, and whether this form is definite. We can
therefore defineΠh(G) = equivalence classes of irreducible

quasisimple Hermitian representations of G,

and get inclusionsΠu(G) ⊂ Πh(G) ⊂ Πq(G).
The atlas goal of understanding the irreducible

unitary representations of a reductive algebraic Lie
group G can now be divided into three steps:

•describe Πq(G) (all representations);
•describe Πh(G) (hermitian representations) as a
subset of Πq(G); and
•describe Πu(G) (unitary representations) as a
subset of Πh(G).

The first two steps of this program have been
addressed by Langlands and by Knapp-Zuckerman;
there is an excellent account in Knapp’s book
Representation Theory of Semisimple Groups. Here
is an approximate statement.

“Theorem” 1 (Langlands, Knapp-Zuckerman).
Suppose G is a reductive algebraic Lie group. Then
the set Πq(G) of equivalence classes of irreducible
quasisimple representations of G is in natural
bijection with a countable discrete collection of
complex algebraic varieties Xi(C). Each of these
algebraic varieties is defined over R, and the subsetΠh(G) corresponds to the real points Xi(R).

Stated in this way, the “Theorem” is equally true
for reductive algebraic groups over arbitrary local
fields. The quotation marks correspond to some
small and well-understood technical difficulties; for
the experts, the magic words are “R-groups”. Each
subset Πu(G)∩Xi(R) is defined by real algebraic
inequalities; the difficulty is that we do not know a
simple description of those inequalities.

Representations of Compact Lie Groups
What is the nature of the information provided
by “Theorem” 1 above? The example of compact
Lie groups (which is a special case!) is helpful. I
will go into some detail about that classical theory,
seeking to formulate results in a way that carries
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over to general reductive algebraic Lie groups.
An irreducible representation of a compact Lie
group is automatically quasisimple, Hermitian, and
unitary; so those distinctions will not appear at all.

Suppose K is a compact connected Lie group,
and T is a maximal torus inK (a maximal connected
abelian subgroup). Necessarily T is isomorphic to
a product of ` circles, where ` is a nonnegative
integer called the rank of K.

Any irreducible unitary representation ofT must
be one-dimensional. A one-dimensional unitary
representation (of any topological group G) is a
continuous homomorphism from G to the group
U(1) of 1 × 1 unitary matrices, which is again
just the circle group. Any homomorphism from
the circle to itself is given by raising to the mth
power for some integer m. That is, Πu(circle) ' Z.
Because T is a product of ` circles, it follows thatΠu(T) ' Z`. In a coordinate-free way, we say thatΠu(T) is a lattice of rank `.

The structure theory of compact Lie groups
provides a finite collection R∨(K, T) of nonzero
Z-linear maps α∨ : Πu(T) → Z, called the coroots
of T in K. The structure theory points also to
certain natural subsets of the coroots, called simple
coroots; we fix such a subset

S∨ = {α∨1 , . . . α∨m}. (A)

The simple coroots are linearly independent, so
they define a nonempty cone

P = {µ ∈ Πu(T) | α∨(µ) ≥ 0 (α∨ ∈ S∨)}, (B)

called the cone of dominant weights.
It is a fundamental fact that everything about

the structure of the compact Lie group K—and
indeed of arbitrary reductive algebraic groups—is
encoded by the lattice Πu(T) and the finite set
of Z-linear maps S∨. (To be precise, one needs
also the simple roots S ⊂ Πu(T), introduced in (C)
below.) In the hands of Chevalley and Grothendieck
and others, this fact led to the theory of reductive
groups over arbitrary fields (or even commutative
rings). For the atlas project, it means that the
structure of reductive groups can be described in
terms of strings of integers and so is perfectly
suited to exact computer calculation.

Theorem 2 (Cartan and Weyl). Suppose K is a com-
pact connected Lie group, and T is a maximal torus
in K. Pick a set S of simple coroots for T in K as in
(A) above, and define dominant weights P as in (B).
Then there is a natural bijection between dominant
weights and irreducible representations of K

P ↔ Πu(K).
In the language of the Langlands and Knapp-

Zuckerman Theorem 1, P parametrizes the count-
able set of algebraic varieties Xi . Each Xi consists
of a single point, so Xi(C) = Xi(R).

This theorem is very satisfactory as a parame-
trization of the irreducible representations of K,

because the set P is very easy to compute and to
manipulate. It is very unsatisfactory as a descrip-
tion of the irreducible representations, because
it does not even explicitly describe the “natural
bijection”. In order to do that, we need a bit more
structure theory. Attached to each coroot α∨ there
is a root α ∈ Πu(T); the set of all roots is written

R(K, T) ⊂ Πu(T).
The roots are by definition the nontrivial repre-
sentations of T appearing in the “adjoint action”
of T on the complexified Lie algebra of K. Cor-
responding to the simple coroots S∨ are simple
roots

S = {α1, . . . αm} ⊂ R(K, T) ⊂ Πu(T). (C)

Here is a description of the Cartan-Weyl bijection.

Theorem 3 (Cartan and Weyl). In the setting of
Theorem 2, an irreducible representation π of K
corresponds to a dominant weight µ ∈ P if and
only if the following conditions are satisfied: a) the
weight µ appears in the restriction of π to T ; and b)
for every simple root α ∈ S, the weight µ +α does
not appear in the restriction of π to T .

Theorem 3 is in some sense a complete descrip-
tion of the irreducible representations of K, but it
is still not completely satisfactory. It does not say
how to calculate the dimension of a representation
or its restriction to a compact subgroup of K. We
will address those questions (and generalizations
for noncompact groups) in the next section.

Character Tables for Lie Groups
Much of the content of the Atlas of finite groups
and representations consists of character tables.
In this section I’ll recall what that means, how
to extend the notion to Lie groups, and how it’s
possible to write character tables for reductive Lie
groups in a finite form.

Suppose π : G → Aut(Vπ) is a representation
of a topological group on a finite-dimensional
complex vector space Vπ . The character of π is a
complex-valued function on G, defined byΘπ(g) = trπ(g).

It’s very easy to see that Θπ is a class function on G
(that is, Θπ is constant on conjugacy classes in G).
What is not quite so obvious, but still elementary, is
that irreducible (finite-dimensional) representations
having the same character are equivalent.

In the case of a finite group G of order N, the
eigenvalues of G are Nth roots of unity, so the
values of characters of G are integer combinations
of the N complex numbers exp(2πmi/N) (for m
an integer between 0 and N − 1). It is therefore
possible to write a character of G precisely: for
each conjugacy class in G, one can write the N
integers that are the coefficients of these roots
of unity. (Fortunately it is possible in practice
to find far more compact representations of the
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character values.) A character table for G is a list
of all the character values of all the irreducible
representations.

If G is a compact Lie group, the notion of char-
acter table still makes sense (since the irreducible
representations are finite-dimensional). What is
not so clear is whether it can be written down in a
finite way. The values of each character Θπ must be
specified at each of the infinitely many conjugacy
classes in G; and then this task must be repeated
for each of the infinitely many π .

Hermann Weyl solved these problems. I’ll write
his solution completely in the simplest case and
then say a few words about the general case.

Theorem 4 (Weyl). Suppose

G = {a+ bi + cj + dk | a2 + b2 + c2 + d2 = 1}
is the group of unit quaternions, and

T = {a+bi | a2+b2 = 1} = {exp(iθ) | θ ∈ R} ⊂ G
is a maximal torus. a) There is exactly one irre-
ducible representation πn of G for each strictly pos-
itive integer n. b) Every conjugacy class in G meets
T , so a class function on G is determined by its re-
striction to T . c) The value of the character of πn
on T is Θπn(exp(iθ)) = sin(nθ)/ sin(θ).

We have in (c) an infinite character table pre-
sented in finite form. The infinitely many rows are
indexed by n, and the infinitely many columns by
θ (more precisely, by θ up to sign and addition of
multiples of 2π ).

In part (a) of the Theorem, one can think of the
integer n−1 as corresponding to a one-dimensional
representation of T , that is, to an element of Πu(T).
A version of (a) for general compact Lie groups
is provided by the Cartan-Weyl Theorem 2 in the
last section. Part (b) makes sense as stated for
a general compact connected Lie group and is
true. The Weyl character formula for general G
looks something like (c). There is a denomina-
tor (generalizing the function sin(θ)) that is a
trigonometric polynomial on T , independent of
the representation. The numerator (generalizing
sin(nθ)) is a trigonometric polynomial built from
the weight µ that parametrizes the representation.

For infinite-dimensional representations, the
difficulties with character theory are more funda-
mental. The operators π(g) are essentially never
of trace class. Harish-Chandra understood that the
character makes sense only after “regularization”
in the sense of distribution theory. Each individual
operator π(g) does not have a trace: one first has
to smooth the operator by averaging over a nice
compact collection of values of g.

Here is how to do that. Recall that a test density
on a smooth manifold M is a compactly supported
complex-valued measure ξ on M , which in local
coordinates is a smooth multiple of Lebesgue mea-
sure. A generalized function on M is a continuous
linear functional on the space of test densities. Any

continuous function f on M defines a generalized
function by the formula

f (ξ) =
∫
M
f (m)dξ(m).

The trace of a finite-dimensional representation
of a Lie group G is a continuous function on G
and therefore may be regarded as a generalized
function. The following theorem of Harish-Chandra
shows that the character of an irreducible qua-
sisimple representation of a reductive algebraic Lie
group G is a generalized function on G.

Theorem 5 (Harish-Chandra). Suppose G is a
reductive algebraic Lie group, π is an irreducible
quasisimple representation of G on a Hilbert
space, and ξ is a test density on G. The operator
π(ξ) =

∫
G π(g)dξ(g) is trace class, and definingΘπ(ξ) = trπ(ξ) makes Θπ a generalized function

on G.
There is a conjugation-invariant open subset

G′ ⊂ G, whose complement has measure zero, so
that the restriction of Θπ to G′ is a conjugation-
invariant analytic function Θ′π , locally integrable
on G. The generalized function Θπ is equal to
integration against Θ′π .

Writing a character table for the reductive alge-
braic Lie group G means writing down each of the
functions Θ′π , as π runs over the (infinite) family
of irreducible quasisimple representations of G.
The reason that each such function can be written
down is that it turns out (just as in the case of
compact groups) to be a quotient of finite integer
combinations of exponential functions.

The possibility of handling infinitely many π is
a consequence of the Jantzen-Zuckerman “transla-
tion principle”. They partition all irreducible repre-
sentations into finitely many translation families. In
the formulas for the characters of representations
in one translation family, only the exponential
functions change: the coefficients in the formulas
remain the same. In the case of a compact group,
there is single translation family, with characters
given by the Weyl character formula; all that varies
with the representation are the exponents. For
example, for the quaternion group described in
Theorem 4, the parameter for the translation family
is the integer n.

Here is a little more detail. The differential
equations for the character Θπ come from the
center Z of the universal enveloping algebra of the
Lie algebra of G. They are eigenvalue equations;
the eigenvalues are the complex scalars by which
Z acts in the representation π . (That Z does act
by scalars is exactly Harish-Chandra’s definition
of quasisimplicity.) The eigenvalues are encoded
by an algebra homomorphism λ : Z→ C called the
infinitesimal character of π .

After appropriate (very subtle!) changes of
variables, the differential equations become (in
local coordinates) systems of constant-coefficient
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eigenvalue equations on Rn. For each choice λ of
eigenvalues, the solutions are finite linear combina-
tions of exponential functions. Harish-Chandra was
able to describe these solutions very explicitly and
completely. (Much of the difficulty is understanding
how solutions on different coordinate patches fit
together.) For each choice of eigenvalues, he found
an explicit basis

Θ1,Θ2, . . . ,ΘN (D)

for the global solutions of the differential equations.
(It would be mathematically more precise but nota-
tionally more burdensome to writeΘλ1 ,Θλ2 , . . . ,ΘλN(λ),
indicating explicitly the fact that the equations
being solved depend on the systemλ of eigenvalues.
I will choose the path of unburdened imprecision.)
As a consequence, each irreducible character Θπ
has a unique expression

Θπ = N∑
j=1

Pπ,jΘj , (E)

for some complex numbers Pπ,j . (The reason for
calling the coefficients P will emerge in the next
section: the overline means the image in a quotient
map, defined from polynomials to coefficients
by evaluation at 1.) Writing down an irreducible
character Θπ is therefore equivalent to writing
down the N complex numbers Pπ,j .

The last important fact is that the coefficients
Pπ,j are all integers. It is not quite clear to whom
this observation should be attributed. At least with
forty years of hindsight, it is easy to deduce from
the work of Langlands and Knapp-Zuckerman on
the classification of irreducible representations.
Zuckerman may have been the first to recognize the
existence and importance of character formulas
(E) with integer coefficients. He wrote an explicit
formula for the character of a finite-dimensional
representation (φ, F) in his thesis; in that case the
coefficients Pφ,j are all ±1 or zero.

How to Compute the Characters
Equation (E) above says that the character table
for a real reductive Lie group G may be ex-

pressed as a matrix of integers Pλπ,j ; here I have
temporarily reinserted the dependence on the
infinitesimal character λ. The index j runs over
Harish-Chandra’s solutions (D) to the differential
equations (with fixed eigenvalues λ). The index π
runs over irreducible representations of G (with
fixed infinitesimal character λ).

The Jantzen-Zuckerman translation principle
says (in a very explicit and computable way) that, as
λ varies, there are only finitely many possibilities

for Pλπ,j . Henceforth I will therefore drop the λ and
speak only of computing one matrix Pπ,j . Thinking
about this matrix is simplified by

Theorem 6 (Langlands and Knapp-Zuckerman).
There is a natural bijection between the set {π}
of irreducible representations of G and Harish-
Chandra’s solutions (D) to the differential equations
for characters. Write πi for the irreducible repre-
sentation corresponding to the solution Θi . Then
the (square) matrix Pπi ,j in (E) above is a lower
triangular integer matrix with 1s on the diagonal.

To say that the matrix is lower triangular re-
quires an appropriate ordering of the solutionsΘj . Harish-Chandra’s construction of the solutions
analyzes exponential terms of greatest possible
growth at infinity onG. If we assume that theΘj are
ordered so that the later ones have faster growth,
then we get the lower triangularity. Another way
to achieve it is explained after equation (F) below.

In this section I will say a bit about the mathemat-
ics underlying the computation of the matrix Pπi ,j .
The main tool is a geometric reinterpretation of
the matrix introduced by Beilinson and Bernstein.
It takes place in a smooth complex projective
algebraic variety X (depending on the reductive
group G) called the complete flag variety X = X(G).
One way to define X is as the variety of maximal
solvable Lie subalgebras inside the complexified
Lie algebra gC of G.

The variety X is degenerate in some very in-
teresting ways. Most algebraic varieties are not
P1 bundles in any way. The variety X has a finite
collection

πs : X → Xs (s ∈ S) (F)

of P1 fibrations. (That is, each πs is a smooth
submersion with fiber the Riemann sphere CP1.)
The parametrizing set S is the set of simple roots
introduced in (C) above.

In case G is GL(n,R), the variety X may be
identified with complete flags in Cn: increasing
chains of n linear subspaces Fj , with dimFj = j .
There are n− 1 P1 fibrations; for 1 ≤ j < n, the jth
fibration arises by throwing away the j-dimensional
subspace Fj in a complete flag.

The ideas of Beilinson and Bernstein concern
the equivariant geometry of X. One might expect
that what ought to matter is the action of G on X.
For technical reasons, however, what enters their
work is equivariance with respect to K(C), the
complexification of a maximal compact subgroup
K ⊂ G.

Theorem 7 (Beilinson and Bernstein) Suppose G is
a real reductive group with complete flag variety X,
K is a maximal compact subgroup of G, and K(C)
is its complexification (an algebraic group acting on
X).

a) Harish-Chandra’s solutions (D) to the differ-
ential equations are naturally in one-to-one corre-
spondence with pairs (Zo,L) consisting of a K(C)
orbit Zo on X and a K(C)-equivariant local system
L on Zo.
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According to Theorem 6, exactly the same parame-
ters index the irreducible representations of G.

b) Suppose πi is an irreducible representation,
corresponding to the pair (Zi,o,Li). Write Zi for the
closure of Zi,o, a (possibly singular) algebraic subva-
riety of X. Suppose Θj is one of Harish-Chandra’s
solutions (D), corresponding to the pair (Zj,o,Lj).
Then the character formula coefficient Pπi ,j of (E)
is equal to the Euler characteristic of the local inter-
section homology of Zi with coefficients in the local
system Li , evaluated at (Zj,o,Lj).

Because Harish-Chandra solved systems of
differential equations to get the Θj , and Beilinson
and Bernstein work with derived categories of
constructible sheaves, you may imagine that
there is some work required to pass from what
Beilinson and Bernstein proved to the statement
of Theorem 7. This translation was one of my own
contributions to the subject. The most difficult
part was convincing some of the experts that the
result was really not quite obvious.

Despite my promise at the beginning to be his-
torically incomplete, I have been asked to interrupt
the mathematics here to say a few words about the
sources of the ideas in Theorem 7. Kazhdan and
Lusztig in 1979 formulated a precise conjecture
describing the characters of irreducible highest
weight modules in terms of the combinatorics
of the Weyl group. They observed that the first
appearance in these characters of coefficients
other than ±1 can be empirically related to the
first failures of local Poincaré duality for singular
Schubert varieties. MacPherson suggested that
their observations might be formalized using inter-
section homology. Kazhdan and Lusztig did this,
proving that their combinatorial construction in
the Weyl group actually calculated the intersection
homology of Schubert varieties. This calculation
is short but very deep, using the tools developed
by Deligne to prove the Weil conjectures. It seems
to have been an inspiration for the development
by Beilinson, Bernstein, Deligne, and Gabber of
the general theory of perverse sheaves, which has
since become a basic tool in representation theory
and algebraic geometry.

The Kazhdan-Lusztig conjectural character for-
mula (still for highest weight modules) was now
a statement involving intersection homology of
Schubert varieties. In this form it was proved inde-
pendently by Brylinski-Kashiwara and by Beilinson-
Bernstein, using the algebraic theory of differential
equations created by Sato, Kashiwara-Kawai, and
Beilinson-Bernstein.

I will not try to describe “intersection homol-
ogy” here. (The book Introduction to Intersection
Homology Theory by Kirwan and Woolf is highly
recommended by my colleagues who should know.)
In order to understand the nature of the statement,
what matters is that intersection homology is a

topological invariant of the singular algebraic vari-
ety Zi . It measures at the same time the nature of
the singularity of Zi (in the theorem, the singularity
at points in Zj,o) and the possibility of extending
the local system Li from the open subset Zi,o to all
of Zi .

As the term “Euler characteristic” suggests, in-
tersection homology provides (for each i and j) not
just a single integer but rather a finite collection of
nonnegative integers pmij , the ranks of individual
local intersection homology groups. I will modify
the indexing of the homology in order to arrange
that the index m can run from 0 to the complex
codimension of Zj in Zi . (One of the key properties
of intersection homology is that the top degree
can appear only if Zj = Zi .) A consequence of
this reindexing is that the Euler characteristic of
Theorem 7(b) is

(−1)dimZi−dimZj
∑
m
(−1)mpmij .

If Zi is smooth and Li is the trivial local system,
then pmij is equal to zero unless m = 0, Zj is
contained in Zi , and the local system Lj is also
trivial; in that case p0

ij is equal to 1.
The Kazhdan-Lusztig polynomial for the pair

(i, j) is by definition

Pi,j(q) =
∑
m
pmijqm/2.

The parameters i and j represent local systems on
orbits of K(C) on the complete flag variety X. The
polynomial can be nonzero only if the orbit Zj,o
is contained in the closure of the orbit Zi,o; this
explains the “lower triangular” result in Theorem
6. It turns out that the local groups vanish in odd
degrees, so that Pi,j is actually a polynomial in q
(with nonnegative integer coefficients). (This is a
special fact about the varieties Zi , not a general fact
about intersection homology.) The degree of Pi,j is
bounded by half the complex codimension of Zj
in Zi ; the bound is strict if i 6= j . (This is a general
fact about intersection homology.) Because of the
vanishing in odd degrees, the Euler characteristic
is just the (nonnegative) value at q = 1, times the
sign (−1)dimZi−dimZj .

The point of Theorem 7 is that characters can be
computed from Kazhdan-Lusztig polynomials and
that these polynomials depend on the geometry of
K(C) orbit closures on the complete flag variety
X. The next theorem describes the geometric tools
needed to compute intersection homology for these
orbit closures.

Theorem 8 (Wolf). Suppose G is a real reductive
group with complete flag variety X, K is a maximal
compact subgroup of G, and K(C) is its complexifi-
cation (an algebraic group acting on X).

a) The action of K(C) on X has finitely many
orbits.
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Suppose Zo is an orbit of K(C) on X, and s ∈ S.
Write Z for the closure of Zo (a projective algebraic
subvariety of X). Define Zs = πs(Z) (cf. (F) above), a
projective algebraic subvariety of Xs , which we call
the s-flattening of Z. Define Zs = π−1

s (Zs), which
we call the s-thickening of Z. The map πs exhibits
Zs as a P1 bundle over Zs .

b) The s-thickening Zs is the closure of a unique
K(C) orbit Zso.

c) There are two mutually exclusive possibilities.
1) The s-thickening Zs is equal to Z, so that Z is
a P1 bundle over Zs . In this case Zso = Zo. 2) The
map πs from Z to Zs is generically finite (and in
particular is finite over the orbit Zo). In this case
dimZso = dimZo + 1; and Zs = (Zs)s . In particular,
the thickened orbit Zso falls in case (1).

d) Every orbit of K(C) on X arises by a finite
succession of thickening operations applied to some
closed orbit.

Part (a) of this theorem is due to Wolf. The
remaining assertions are quite easy, although it is
more difficult (for me at least) to attribute them
precisely. The idea of constructing and describing
the orbits in this way has its roots in the theory of
Schubert varieties and so is very old.

Theorem 8 describes the geometry of orbit
closures and so leads to Kazhdan and Lusztig’s
algorithm for computing intersection homology by
induction on the dimension. Here is a sketch. An
orbit of minimal dimension is closed and is itself a
complete flag variety for the algebraic group K(C).
Such varieties are smooth, so the local intersection
cohomology is simple. According to part (d), any
orbit Wo of greater than minimal dimension must
arise by thickening: Wo = Zso, with Zo an orbit of
dimension one less. Now the orbit closure Z is a
ramified cover of the flattening Zs (according to
(c)(2)); so the intersection homology of Zs is very
close to that of Z, which is known by induction.
Finally the orbit closure W is a P1 bundle over
Ws = Zs ; so the intersection homology of W is
made in a simple way from that of the flattened
variety Zs .

Making this sketch precise uses versions of the
Weil conjectures for intersection homology, proved
by Beilinson, Bernstein, and Deligne. The most
subtle point is descent from Z to Zs by the ramified
covering map πs . What happens there is that the
intersection homology down on the flattening Zs
arises from that on the covering Z by removing
something. Exactly what should be removed is
determined by certain highest degree intersection
homology of Z; that is, by top degree coefficients
in Kazhdan-Lusztig polynomials.

In the setting of Kazhdan and Lusztig’s original
work, the orbits Zo are simply connected, so the
local systems involved are all trivial. For general
real groups the orbits have fundamental groups
of size up to (Z/2Z)rank and therefore a wealth of

local systems. Keeping track of these local systems
under the maps πs is subtle and was another of
my contributions to this mathematics. (One ends
up in some cases with inductive formulas not for
individual Kazhdan-Lusztig polynomials, but for
sums of two polynomials, corresponding to two
local systems. Part of the difficulty is to find a way
to solve the resulting collection of equations.)

A critical point is that the algorithm needs to
know the highest degree coefficients and not just
the values of the polynomials at q = 1. Even though
we are interested (for character theory) only in
values of the polynomials at 1, the algorithm does
not allow us to compute only values at 1.

Once the algorithm has forced us to look at
coefficients of the Kazhdan-Lusztig polynomials, it
is very natural to ask for representation-theoretic
interpretations of those coefficients. There is a
great deal to say on this subject. I will mention
only that the top degree coefficients mentioned
above turn out to be dimensions of Ext1 groups
between irreducible representations.

The Atlas of Lie Groups and
Representations
That brings the mathematical story up to about
1985. I’ll now turn away from abstract mathematics,
toward the story of the atlas project.

In 2002, Jeff Adams had the idea of getting
computers to make interesting calculations about
infinite-dimensional representations of reductive
Lie groups: ultimately, he hoped, to calculate uni-
tary representations. Of course as mathematicians
we want completely general theorems, and it’s by
no means clear that there is a finite calculation to
find the unitary duals of all reductive groups at
once. But the work of Dan Barbasch (for example,
his classification of the unitary duals of the com-
plex classical groups) makes it possible to hope
that one can find a finite description of the unitary
duals of all classical Lie groups. The exceptional
groups are finite in number, so treating them is
a finite calculation. That became Jeff’s standard
for measuring the effectiveness of any piece of
representation-theoretic software: could it treat
the largest exceptional group E8?

It was clear that the first problem was to write
a program that could work with the Cartan sub-
groups, maximal compact subgroups, and Weyl
groups of any real reductive group. Jeff recruited
Fokko du Cloux to do this, and Fokko began to work
in 2003. By 2004 his software could handle this
structure theory (better than most mathematicians,
at least).

The next step was less obvious, but Fokko
and Jeff settled on computing Kazhdan-Lusztig
polynomials for real groups. Fokko had written the
best software in the world to do this for Coxeter
groups; the algorithms for real groups are similar
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in structure (although much more complicated
in detail, because of the complications attached
to local systems). Theorem 7 above says that
knowing these polynomials provides formulas for
irreducible characters; it is also a critical step in
several computational approaches to classifying
unitary representations.

So late in 2004, Fokko began to add to his soft-
ware an implementation of the Kazhdan-Lusztig
algorithm for real groups. The papers in which
this algorithm is formulated are extremely dense,
and written with no consideration for computa-
tional practice. An expert could easily spend many
months just to understand the mathematical state-
ments. Fortunately, Jeff Adams had been working
on a new formulation of Theorem 6 (parametrizing
irreducible representations), growing out of earlier
work that he did with Dan Barbasch and me. Jeff’s
formulation seemed suited to computer implemen-
tation; he had been working with Fokko to make it
more so.

Over the course of the next year, Fokko un-
derstood the Kazhdan-Lusztig algorithm for real
groups, recasting it in the language that he and Jeff
had developed. He wrote clear and efficient code
to implement it. In November of 2005—incredibly
soon!—he finished. Very quickly he and Jeff used
the software to compute Kazhdan-Lusztig polyno-
mials (and so character tables) for all of the real
forms of F4, E6, and E7, and for the non-split form
of E8.

The most complicated of these calculations is for
the non-split form of E8. There are 73,410 distinct
(translation families of) irreducible representations,
so the character table is a 73,410× 73,410 matrix
of integers. The integers are values at q = 1 of
Kazhdan-Lusztig polynomials. These polynomials
have degrees from 0 to 27. Their coefficients are
nonnegative integers, of which the largest is 2545.
The total number of distinct polynomials appearing
(among the three billion or so entries below the
diagonal in the matrix) is 10,147,581. Here is the
polynomial with largest coefficient:

q13 + 30q12 + 190q11

+682q10 + 1547q9 + 2364q8

+2545q7 + 2031q6 + 1237q5

+585q4 + 216q3 + 60q2 + 11q + 1

It’s hard to say what constitutes a “typical”
polynomial, but here is the one at the midpoint of
the lexicographically ordered list:

q9 + 7q8 + 13q7 + 6q6 + 6q5

+14q4 + 18q3 + 16q2 + 7q + 1.
Fokko’s software will calculate this character table
on my laptop in about half an hour, using 1500
megabytes of RAM. (I bought a big memory chip
at about the same time as I sold my soul to the
silicon devil.)

Among the exceptional groups, that left the split
form of E8.

Warming Up for E8

How big a computation is the character table for
split E8? Fokko’s software told us that there were
exactly 453,060 (translation families of) irreducible
representations. According to Theorem 6 above,
the character table can be described by a square
matrix of integers, of size 453,060. The number of
entries is therefore about 2× 1011, or 200 billion.

Fortunately the matrix is lower triangular, so we
only need 100 billion entries.

Unfortunately we need to calculate not the
entries directly, but rather the Kazhdan-Lusztig
polynomials whose values at 1 are the entries. The
degrees of the polynomials are bounded by 31;
we expected an average degree of about 20, and
therefore a total number of coefficients around 2
trillion.

Fortunately many of the matrix entries are easily
seen to be equal. An example is Zuckerman’s
formula for the character of a finite-dimensional
representation, where I said that all the coefficients
are ±1 or 0; this is the last row of the character
matrix. In the case of E8, there are 320,206 nonzero
terms in this row. Fokko’s software recognizes that
all 320,206 of those Kazhdan-Lusztig polynomials
are going to be equal and stores only the diagonal
entry 1. In general one needs to store only one
representative polynomial for each family of “obvi-
ously equal” entries. Fokko’s software calculated
how many such families there were: a bit more than
6 billion. So we were down to storing about 6 billion
polynomials with about 120 billion coefficients.

Unfortunately we had no clear idea how big the
(nonnegative integer) coefficients of these polyno-
mials could be. In the case of split D5, the largest
is 5. For split E6, the largest is 27, and for split
E7, it’s 3583. This trend was not encouraging; it
seemed clear that the coefficients would exceed
65,535 = 216 − 1, so that they could not be stored
in two bytes (sixteen bits) of computer memory.
The next practical size is four bytes.

Fortunately Fokko wrote the software to com-
pute with four-byte integers and to test carefully
for numeric overflow throughout the computation.
If overflow happened, the plan was to switch to
eight-byte integers and try again.

Unfortunately, 120 billion 4-byte integers re-
quire 480 billion bytes of RAM, or 480G. That’s a
lot of RAM. (The nature of the Kazhdan-Lusztig
algorithm, which constantly looks at widely dis-
tributed results from earlier in the computation,
makes storing results on disk impractically slow.
We tried!)

Fortunately, some of the six billion polynomials
are zero, and some of them are equal to others
“by chance” (that is, for reasons that we have yet
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to understand). So Fokko wrote the software to
store only one copy of each distinct polynomial.
He hoped that the number of distinct polynomials
might be a few hundred million: so perhaps 6 billion
coefficients, requiring 25G of RAM. The indexes
keeping track of all these polynomials would also
occupy a lot of memory: by the most optimistic
estimates perhaps 45G, but quite possibly a lot
more.

Unfortunately, we didn’t have a computer with
even 50G of RAM.

Fortunately computer science is often computer
art, and even Fokko’s work could be improved.
Fokko worked on that constantly during 2006,
and Marc van Leeuwen began to make serious
contributions as well. The two of them rearranged
the indexes and the code in some extraordinarily
clever ways.

Unfortunately, tests running partway through
the E8 calculation (done mostly by Birne Binegar)
revealed that Fokko’s first hopes about the number
of distinct polynomials were too optimistic. Even an
optimistic reading of Birne’s tests suggested more
like 800 million distinct polynomials, meaning
perhaps 60G or more to hold the coefficients.

Fortunately Dan Barbasch is now chair of the
math department at Cornell, and in September of
2006 he managed to gain access to a machine with
128G of RAM and 128G of swap space. He used it
to run the E8 computation to the end. The fact that
Fokko’s overflow tests were not set off showed
that all the coefficients really fit in four bytes.

Unfortunately he had no reasonable way to
write the results to disk, so they disappeared.
(Fokko’s software was written to produce output in
human-readable form. In the case of E8, his output
for the character table would have consisted of
about fifty billion lines (one for each nonzero
entry in the character table) averaging about 80
characters. As a disk file this would have been
several terabytes.) Also unfortunately, Dan didn’t
have the improvements that Fokko and Marc had
made to the code: Dan’s computation used 224G
of memory (half of it swap space). Because of the
use of swap space, it took twelve days to finish.

Fortunately, by November of 2006, Fokko and
Marc had trimmed memory use in the code a great
deal. Through the persistence of Birne Binegar, and
the generosity of number theorist William Stein, the
atlas group got access to William Stein’s computer
sage at the University of Washington (with 64G of
RAM and 75G of swap). On this machine we could
finally do some large fraction of the E8 character
table computation. By late November, we believed
that we could finish E8 with about 150G of RAM.

Unfortunately, 150G is just a little more than
sage has, even with swap.

(Not) Buying a Really Big Computer
Birne Binegar and Jeff Adams suggested that we
start looking seriously at applying for an NSF grant
to buy a machine with perhaps 256G of RAM:
something that might cost US$150,000 or more. I
asked a number of mathematicians whether they
might be able to make use of such a computer.

Noam Elkies had a fascinating reply. First he ex-
plained some theoretical limits on the computations
that could use a lot of memory.

A computation that actually uses
N bytes of storage must take time
at least N. But once N gets as large
as 256GB it might not be feasible
to spend much more than N time:
N·log(N) orN·log2(N) is certainly
OK (e.g., fast integer or polynomial
arithmetic, and other applications
of the Fast Fourier Transform; also
solving f (x) = f (x′) by sorting N
values of f (x) and finding a consec-
utive match); maybe also N3/2 (e.g.,
linear algebra with dense matrices
of size N1/2, or computing the first
N coefficients of modular forms
such as ∆ without fast arithmetic);
probably notN2. So there might not
be all that much room for making
use of such a huge machine…

He went on to ask

Is it clear that the E8 computation
cannot fit into “only” 128 or 64GB?

I explained the demands of polynomial storage:

We know that the polynomial co-
efficients can exceed 216 (by com-
putation), and we hope that they
don’t exceed 232. Each polynomial
is stored as a vector of 32-bit in-
tegers, of size exactly equal to its
degree plus one. Assuming an av-
erage degree of 19, that’s 80 bytes
per polynomial.

On November 30, Noam replied

Well 232 is less than the prod-
uct of the ten odd primes less
than 25, so unless the computation
requires divisions by numbers oth-
er than 2 you could reduce this
from 80 bytes to something like
(5/32)·80 = 12.5 bytes, at the cost
of running the computation 9 times
(counting once for mod 3 · 5).

In other words, we needed to stop thinking about
intersection cohomology for a while and use the
Chinese Remainder Theorem. Noam’s suggestion
was to compute the Kazhdan-Lusztig polynomials
modulo m for several small values of m and
to store the results to disk. A second program
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could (for each polynomial) read in these several
mod m reductions; apply the Chinese Remainder
Theorem to compute the polynomial modulo the
least common multiple of all the moduli; and write
the result to disk. This second program would need
to have only a handful of polynomials in RAM at
the same time, so it could run on a much smaller
computer.

I started to compose a reply explaining why
modular reduction of the Kazhdan-Lusztig algo-
rithm doesn’t work, but I had to throw it away:
the algorithm works perfectly over Z/mZ. Fokko’s
code was beautifully compartmentalized, and Marc
van Leeuwen is amazing, so by December 4 we were
getting character table entries modm for anym up
to 256. In these calculations, we needed just one
byte of memory for each polynomial coefficient. A
billion polynomials of degree 20 could live in 20G
of RAM.

Computing Characters Mod m
On December 6 Marc’s modifications of Fokko’s
code on sage computed about three-fourths of
the entries in the E8 character table mod 251,
finding almost 700 million distinct polynomials
and using 108G of memory. Since 90% of that
was indexes, working on their structure became
worthwhile. Marc redesigned the indexes rather
completely (replacing 8-byte pointers by 4-byte
counters several billion times, for example). In the
end he reduced the size of the indexes to about
35G; they would have required more than 100G for
the original code. He also added code to output
the answers to (small machine-readable) disk files.

Meanwhile Birne Binegar ran various versions
of the code on sage. Among other things he
established for certain that there were more than
one billion distinct polynomials.

Early on December 19, Marc’s modified code
began a computation for E8 mod 251, with the
possibility of actually writing the result usefully
at the end. Essentially it worked, finishing the
computation in about 17 hours. From diagnostic
output of the software, we learned that there were
exactly 1,181,642,979 distinct Kazhdan-Lusztig
polynomials mod 251. (That turned out to be the
number over Z as well.) The calculation used only
65G of memory; the improvement over 108G on
December 6 was because of Marc’s redesigned
indexing system.

But writing the answer to disk took two days.
Marc and I went over Marc’s output code to see why.
We figured it out, and Marc improved the speed.
But we found at the same time a bug: he wrote
size() in one line where he meant capacity().
The result was that, even though the polynomials
were all correctly written to disk, the index files
(explaining which polynomial was stored where)
were missing something like half their contents.

Marc fixed things instantly, and on Thursday
evening December 21 we started a calculation
mod 256 on sage. This computed 452,174 out of
453,060 rows of the character table in 14 hours,
then sage crashed. We tried again starting late
Friday afternoon, and actually finished with good
output: the character table mod 256 was written to
disk! Because we used multi-threading to speed up
the computation, this run took just eleven hours.

On Saturday December 23 we started a calcu-
lation mod 255. This time sage crashed a third
of the way through the computation. There was
no one physically present to reboot it (apparently
some kind of holiday in Seattle) so we retired for a
bit (still having mod 256 as our only good output
files).

Meanwhile Marc van Leeuwen had written code
to combine Kazhdan-Lusztig polynomials from
several moduli m1,m2, . . . into Kazhdan-Lusztig
polynomials modulo lcm(m1,m2, . . .). We tested
the code on the first hundred million entries of
the E8 character table modulo 253, 255, and 256
(which we could calculate on smaller computers
than sage), and it worked fine. When sage came
back up on December 26, we got a character table
mod 255 written to disk. At 1 a.m. on December 27,
we started a run mod 253. About halfway through,
sage crashed.

The experts I consulted assured me that the
atlas software couldn’t possibly be crashing sage.
My own opinions about the causes of the crashes
wavered between black helicopters from the NSA
and Sasquatch. We resolved to keep our hands off
sage until we were older and wiser: say for a year.

On Wednesday January 3 we were all one year
older, which made perhaps thirty years of addi-
tional wisdom counting all the atlas people. This
factor of thirty seemed like a suitable margin
of safety, so that afternoon we started another
computation mod 253. This finished in twelve
hours.

The Chinese Remainder Calculation
By 4 a.m. Thursday January 4th we had output
for three moduli (253, 255, and 256) with least
common multiple 16,515,840: bigger (we had some
hope) than all the coefficients of the Kazhdan-
Lusztig polynomials. Marc van Leeuwen took unfair
advantage of the time difference in Europe to start
running his Chinese Remainder Theorem utility on
the results. Its first task was to correlate the indices
of the three output files, to determine which (of
1.1 billion) polynomials mod 253 corresponded to
which mod 255. That finished in nine hours.

At that point we encountered another speed
problem. The first version of Marc’s software had a
counter displaying the number of the polynomial
to which the Chinese Remainder Theorem was
being applied, to allow for monitoring progress.
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Since there are more than a billion polynomials,
this meant writing several billion characters to the
display. It turns out that takes a (very) long time. So
we started over on Friday morning January 5, with a
counter that updates only every 4096 polynomials.
Everything went nicely until sage crashed.

William Stein identified sage’s problem as a
flaky hard drive. The situation for atlas was
this: sitting on sage’s flaky hard drive were 100
gigabytes of output files, the Kazhdan-Lusztig
polynomials modulo 253, 255, and 256 for E8.
Each of these files represented something like
twelve hours of (multi-threaded) computation; the
hundreds of hours of unsuccessful computations
made them feel a great deal more valuable.

William Stein replaced the bad hard drive with
a good one, on which he had made daily backups
of all the work on sage. He did this more or less
instantly: we still had our data files. I was already
deeply indebted to his generosity in allowing the
atlas group access to sage, but this raised him
even higher in my esteem.

We restarted the Chinese Remainder calculation
late Friday afternoon January 5.

Early Saturday morning, the disk file of polyno-
mial coefficients mod 16515840 had grown to be
about 7 billion bytes larger than it was supposed
to be. Since it was a day with a y in it, I assumed
that Marc van Leeuwen would be working. I asked
him to find out what was wrong. He was visiting
his family in the Netherlands for the weekend and
had extremely limited access to the Internet.

The bug was (to my eyes) unbelievably subtle.
Since the number of polynomials is about a billion,
Marc’s code represented the index of a polyno-
mial by a 4-byte integer (perfectly good up to
4,294,967,295). At some point this integer needs to
be multiplied by 5 (the number of bytes in the index
entry for one polynomial); the result is put into an
8-byte integer, where it fits nicely. But when the
polynomial number exceeds 858,993,459, and the
multiplication is done in four bytes, it overflows.
The result was that the code worked perfectly in
any reasonable test (like the one we ran with a
hundred million polynomials).

To complicate Marc’s task further, the bug was
not present in his most recent version of the code;
what I was running on sage was a couple of days
older.

So he was looking for a subtle bug that wasn’t
there, without Internet access to the machine where
the problem occurred. It took him almost twenty
hours to find and fix it (here of course I assume that
he neither slept nor ate nor spoke to his family).

Marc’s analysis showed that the bug came into
play only around polynomial number 858 million;
so all the coefficients (modulo 16,515,840) calcu-
lated before that were correct. The largest of these
coefficients was 11,808,808, at polynomial number
818,553,156. (That is the polynomial displayed at

the beginning of this article.) I was convinced that
we’d find larger coefficients among the 350 million
polynomials that were not correctly evaluated the
first time and that we’d need a larger modulus
than 16,515,840 to get them all.

So at 6 a.m. on Sunday January 7th I was able
to restart Marc’s current (and correct) Chinese
Remainder Theorem utility, this time adding mod-
ulus 251. Of course nothing went wrong (because
what could go wrong?), and the last polynomial
was written to disk just before 9 a.m. Eastern time
on Monday January 8.

What Next?
Sixty gigabytes is too much information to look
at, even for nineteen mathematicians working in
seamless harmony.1 Here are some of the “clean
and simple results” that I promised in the in-
troduction. Attached to any representation are
many beautiful geometric invariants. Knowledge
of the character table allows us to compute some
of them. We have computed the Gelfand-Kirillov
dimension of each irreducible representation of E8.
This is an integer between 0 and 120 that mea-
sures how infinite-dimensional the representation
is. Finite-dimensional representations are those
of GK dimension 0, and generic representations
(in a technical sense coming from the theory of
automorphic forms) are those of GK dimension
120. The finite-dimensional representations were
identified by Cartan and Weyl (Theorem 2 above)
around 1930, and the generic representations by
Kostant in 1978 (in both cases for all real reductive
groups).

Now we can say for E8 exactly what happens be-
tween these extremes. For instance, of the 453,060
(translation families of) representations we studied,
there are exactly 392 of GK dimension 57. We can
say which ones they are. (I chose 57 because it’s
the smallest possible dimension of a nontrivial
homogeneous space Z57 for E8. These 392 families
of representations appear in sections of vector
bundles over Z57.) In the same way we can identify
James Arthur’s special unipotent representations,
which conjecturally play a fundamental role in the
theory of automorphic forms. There are 111 of
these among the 453,060 representations.

In the longer term, our goal is to determine
completely the unitary irreducible representations
for the exceptional Lie groups. Our hope is that
knowledge of the character table will allow us to
make a computation of these unitary representa-
tions. Armed with a list of unitary representations,
we can try to explain (most of) it using the Kirillov-
Kostant orbit method, or Langlands’ ideas about

1This is a theoretical assertion. I have no practical experi-
ence with a team of nineteen mathematicians working in
seamless harmony.
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functoriality, or perhaps even something entirely
new.

Despite the length of this article, I have left out
a great deal. I have said nothing about the meetings
of the atlas group, where the insights of all of
the mathematicians involved contributed to the
shape of the software that Fokko was writing, and
to our evolving understanding of the mathematics
beneath it.

The greatest omission is the personal story of
Fokko du Cloux. He was diagnosed with ALS (a
progressive neurological disease) just after finish-
ing the Kazhdan-Lusztig computation software
in November of 2005. By February 2006 he had
little use of his hands, and by May he was entirely
paralyzed below his neck. But he continued to
share his skills and insights into the mathematics
and the programming—and his great joy at meeting
a formidable mathematical challenge—with Jeff
Adams and with Marc van Leeuwen and with me,
until his death on November 10, 2006.

The atlas has introduced me to great mathe-
maticians I barely knew, like Marc van Leeuwen and
John Stembridge, and it has shown entirely new
depths in people I knew well, like Jeff Adams and
Dan Barbasch. So it’s a very high bar…but what has
been best of all, mathematically and personally,
has been spending time with Fokko. It’s still the
best: every minute I spend on this project is a
chance to think about him, and that’s always good
for a smile.

So thank you to Fokko, who did this all by
himself.

Thank you to everyone who helped him—Marc
van Leeuwen did more of that than anybody, but
there were a lot of indispensable people.

I haven’t had a boss since I worked in a lum-
beryard in the summer of 1972, until Jeff Adams.
Thank you, boss!

I hope to be back here when we have some
unitary representations to share.

Members of the Atlas of Lie Groups and
Representations
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Alessandra Pantano
Annegret Paul
Siddhartha Sahi
Susana Salamanca
John Stembridge
Peter Trapa
David Vogan
Wai-Ling Yee
Jiu-Kang Yu

We are very grateful to Brian Conrey and
the American Institute of Mathematics, which
provided financial support and a wonder-
ful mathematical meeting place from the
beginning of the atlas project; and to the Na-
tional Science Foundation, which has provided
support through FRG grant 0554278.

—D.V.
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