CRYPTOGRAPHY AND COMPUTER SECURITY, 2020/21

Lucky 13: Timing Attacks against TLS and DTLS

Protocols

Martin Turk
mt5555 @ student.uni-lj.si

Abstract. The Transport Layer Security (TLS) protocol provides a secure channel between two applications

to ensure privacy and integrity of the exchanged data. DTLS is a variant of TLS built for use cases where

cost of establishing sessions is too high. With the wide adoption of the protocols many experts are seeking for

their vulnerabilities. In this report we present distinguishing and plaintext recovery attacks against TLS and

DTLS. The attacks exploit the well known vulnerability of CBC-mode during decryption and can—with careful

statistical analysis—recover plaintext data. We overview experimental results obtained in controlled environment

and discuss practicality of the attacks and some possible countermeasures.

Key words: CBC-mode encryption, TLS, DTLS, timing attack, distinguishing attack, plaintext recovery

1 INTRODUCTION

In today’s world, where part of our life is basically on
the Internet, data confidentiality and integrity is of great
importance. The Transport Layer Security (TLS) and
Datagram TLS (DTLS) protocols aim to provide just
that.

TLS is the most common secure communication pro-
tocol on the Internet today. Its main task is establishing a
secure end-to-end channel between applications for safe
data transmission. It has originated from its predecessor—
the SSL Version 3.0 protocol in 1999 and was developed
by T. Dierks and C. Allen [3]. Whereas SSL was
intended for safe end-to-end communication between
browsers, TLS was made to be used more generally
for securing a wide variety of applications such as e-
commerce transactions, virtual private networks (VPN),
mobile applications and much more. Today the latest
version of TLS protocol is TLS Version 3.0 [7] but has
not yet been completely adopted as many legacy systems
still use older technology and protocols.

The DTLS protocol is based on TLS but operates on
UDP instead of TCP [8]] and is greatly appreciated when
the cost of establishing all the TLS sessions is too high.
For example, DTLS is used for video streaming where
large amount of data is transmitted but is not problematic
if some of the frames are not received.

TLS and DTLS are comprised of several subprotocols.
The important two are (D)TLS Handshake Protocol,
which is used for session key establishment, ciphersuite
negotiation, authentication and more, and the Record
Protocol, which uses symmetric key cryptography like
block and stream ciphers to establish secure channel for
data transmission. The attack described in this paper

exploits the vulnerabilities of the later. The Record
Protocol uses MAC-Encode-Encrypt (MEE) principle,
where the MAC tag is first computed from the plaintext
data. Because we concentrate on CBC-mode encryp-
tion the encoding step concatenates MAC tag, plaintext
data, and encryption padding. In last step the encoded
plaintext is encrypted using DES, 3DES or AES. This
configuration of the protocols is referred to as MEE-
TLS-CBC and is more precisely described in Section
2l

Due to popularity of the protocols scientists and
experts continue to study their security and have found
many attacks over the years. The cryptographic attacks
against the TLS Record Protocol have largely inspired
its evolution. T. Duong and J. Rizzo achieved full
plaintext recovery against TLS 1.0 in 2011 with the so-
called BEAST attack [6] where an attacker must first
gain access to a chosen plaintext capability, perhaps by
inducing the user to download malware into his browser.
There are well known attacks which all emerge from
the fact that the padding is added after the MAC has
been computed and so form unauthenticated data in the
encoded plaintext [[L1], [4], [10].

In Sections [3] and [the distinguishing attack and
full plaintext recovery attacks [1] developed and pub-
lished by N. J. AlFardan and K.G. Paterson in 2013
are described. A variant of the attacks exist against
Amazon’s implementation of TLS [2] which incorporate
some of the countermeasures provided in [1]] such as
random waiting period in case of MAC failure. The
authors M. R. Albrecht and K. G. Paterson show that
those countermeasures are not sufficient. The attacks
exploit well-known vulnerabilities of CBC-mode en-
cryption [[L1]. Decryption needs to check if the format
is valid. Validity of the format is easily leaked from

communication protocols in a chosen ciphertext attack
since the receiver usually sends an acknowledgment or
an error message. This is a side channel, or, in our
case, timing side channel. This is because the attacks
exploit the fact that, when badly formatted padding is
encountered during decryption, a MAC check must still
be performed, assuming zero-length pad, to prevent the
known timing attacks. It turns out that zero-length pad
assumption does not prevent the timing side channel.
Various factors like the size of the header, MAC tag,
and block can be aligned such that there will be a
time difference in the time that it takes to process TLS
records with valid and invalid padding pattern. This
difference is measured as error message appearance on
the network. This timing side channel can be used many
times to obtain many timing samples. With use of some
statistics plaintext data can be revealed. Some practical
considerations of the attacks are mentioned and some
solutions are provided as well.

The last chapter presents some results that N. J.
AlFardan and K.G. Paterson obtained in [[1]] in controlled
environment. We conclude that Lucky 13 against TLS
is most likely not possible in real-world scenario (due
to requiring too many TLS sessions), whereas DTLS is
vulnerable against it.

2 TLS AND DTLS PROTOCOLS

The (D)TLS cryptographic protocol is probably the
most widely-used client-server secure communication
protocol on the Internet today. Its primary objective
is to provide privacy, authentication, and data integrity
between two communicating applications, and overall
end-to-end security against an active man-in-the-middle
(MITM) attacker. Given the immense number of com-
munication channels established every second, it is fair
to say that (D)TLS is one of the most important real-
world deployments of cryptography that exist.

It was originally deployed as a Secure Socket Layer
(SSL) Protocol by a company named Netscape. Later
when SSL Version 3.0 was introduced the IETF adopted
the protocol, upgraded it, and specified it as (D)TLS 1.0
which corresponds to SSL 3.1. Although TLS 1.3 has
been released in 2018 this report focuses on TLS 1.2 as
it still remains the de facto standard. TLS 1.3 is more
efficient in computation and provides better security but
it takes time for its widespread adoption.

The following subsections provide a brief description
of how (D)TLS protocol works and what it consists of.
The ephasis is put on the (D)TLS Record Protocol
which uses CBC-mode encryption that the attack de-
scribed in this report exploits. Both protocols are built
nearly the same and for that reason the TLS protocol is
described and the differences between the two are stated
where needed. More detailed descriptions of TLS and
DTLS protocols can be found in [5] and [9], respectively.

2.1 TLS Protocol Architecture

The TLS protocol operates as an intermediate layer
between the transport and the application layer, and
consists of several (sub)protocols distributed in two
layers (see Figure [TI). The two core (sub)protocols are
the TLS handshake protocol, which is responsible for
authentication and key generation, and the TLS record
protocol, which provides a secure channel for data
transmission.

Application Layer Application Layer

TS [TLS Change
Handshake |Cipher Spec
Protocol | Protocel

TLS Alert A”%";;"““
Protocel

Protocol

TLS Record Protocol

‘ Transport Layer | | UDP | TCP |

‘ Internet Layer | | P |
Figure 1.. The two-layer structure of TLS
(sub)protocols.

2.2 TLS Handshake Protocol

The TLS handshake protocol is layered on top of TLS
record protocol (see [2.5) and is executed as soon as
client-server connection is established. It allows a client
and a server to authenticate each other, negotiate cipher
suites and (optionally) compression methods, decide on
protocol version, and generate secrets (private keys)
using public-key cryptography algorithms. The protocol
comprises four sets of messages that are exchanged
between client and a server as seen in [}

Client Server

ClientHello

ServerHello
*Certificate
*ServerKeyExchange
*CertificateRequest
ServerHelloDone

*Certificate
ClientKeyExchange
*CertificateVerify
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Application Data
Figure 2.: The TLS handshake protocol. Star symbol (*)
indicates optional or situation-dependent messages that
are not always sent. The execution of the protocol is
from top to bottom.

Once the TLS handshake is complete and the client
and server have established a secure connection, they can
start exchanging application-layer data packages using
application data protocol. In short, application data
protocol takes application data and feeds it into the TLS
record protocol for fragmentation, compression, encryp-
tion, and encapsulation. The produced TLS records are
then sent to the other party, where the application data
is decrypted, verified, decompressed, and reassembled.

2.3 TLS Change Cipher Spec Protocol

The TLS change cipher spec protocol indicates the
change in ciphering strategy—i.e., notifies that the pa-
rameters (application keys) established by the handshake
protocol have changed. The protocol is a simple message
which is compressed and encrypted using current keys,
and sent during the handshake negotiation when the
security parameters have been agreed upon.

2.4 TLS Alert Protocol

The TLS alert protocol allows communicating par-
ties to signal potential problems to each other through
alert message, which consists of two bytes. The first
byte indicates the severity of a problem (warning or
fatal), and second indicates the degree of severity or
description of the alert (e.g. handshake_failure).
If the alert message is fatal, the current TLS session
is terminated immediately. Like other messages, alert
messages are encrypted and compressed, as specified by
the current security parameters.

2.5 TLS Record Protocol

The TLS record protocol is in charge of cryptograph-
ically protecting the application-layer data. It uses a
MAC-Encode-Encrypt (MEE) construction and at the
encryption step we focus on block cipher encryption in
CBC mode. We refer to this setting of protocol as MEE-
TLS-CBC. Other two encryption possibilities are stream
ciphers and authenticated encryption with associated
data (AEAD).

2.5.1 Encryption: In the record processing the ap-
plication data is pushed through four layers of TLS
record protocol to obtain the corresponding records. This
process is illustrated in Figure [3]

‘ Application Data ‘

Fragmentation

| Fragment N |

Fragment 1 | | Fragment 2 |

Compression

SQN| HDR \ PayID;c;H7|

MAC
computation |

Payload | MAC | Padding |

Encryption

| Ciphertext |

Figure 3.: (D)TLS encryption procedure.

First, the application-layer data is fragmented into
blocks of 24 bytes or less. Next, each fragment may op-
tionally be compressed using the compression algorithm
defined in the current session state. The combined use of
compression and encryption is known to be dangerous,
as it introduces some new vulnerabilities that may be
exploited by specific compression-related attacks. For
this reason the use of compression is not recommended
and has been completely removed in TLS 1.3.

In the third step a Message Authentication Code
(MAC) is computed. Let R denote an individual (op-
tionally compressed) fragment to which we refer to as
a record. A record is simply a byte sequence of length
zero or more. The sending party also maintains an 8-
byte sequence number SQN which is incremented for
each record sent. Aditionally, it constructs a 5-byte field
HDR which includes a 2-byte version field, a 1-byte type
field, and a 2-byte length field. Let 7" denote a MAC
tag calculated over the byte sequence SON||HDR||R.
Depending on the algorithm can the size of 7" be 16
bytes in case of HMAC-MDS5, 20 bytes in case of
HMAC-SHA-1, or 32 bytes in case of HMAC-SHA-256.
We denote size of T as t.

In the last step the record is encrypted. First the
record is encoded into plaintext P = R||T'||pad, where
pad is a seqence of padding bytes such that the block
size b divides the length of P. Size of b depends on the
selected block cipher—i.e., b = 8 for 3DES and b = 16
for AES. The padding is made up of p+1 concatenations
of some byte value p, where 0 < p < 255 (e.g.,
”0x00”, ”0x01|0x01”). Finally, the encoded record P is
encrypted using CBC-mode of the selected block cipher
as:

Ci == EK(Pz D Cifl)
Co =1V

were IV can be explicit (randomly generated) or chained
depending on the version of TLS and DTLS. P; cor-
responds to i-th block of P and K is the key that
the block cipher uses. After each block of plaintext is
encrypted the resulting ciphertext C' consists of concate-
nated ciphertext blocks C;. Before the ciphertext C' is
transmitted to the receiver the HDR is prepended to it.
While in TLS the sequence number is not sent as part of
the message in DTLS it is. Moreover DTLS always uses
randomly generated IV while some versions of TLS use
chained IV.

2.5.2 Decryption: To decrypt the received message
HDR||C' we need to reverse the encryption process. The
receiver first extracts the ciphertext C from the message
and checks whether the block cipher’s block size b
divides the length of ciphertext and if C' is large enough
to contain at least a zero-byte record, a MAC tag of size
t, and at least one byte of padding.

Then the ciphertext C' is decrypted block by block

using decoding algorithm D to recover the plaintext
blocks:

P, = Dg(C;) & Cia
Co=1V

In next step the padding is removed. The padding
format has to be the same as specified in encryption
process, otherwise some attacks are possible which
exploit this vulnerability. Usually last byte of plaintext P
is taken which tells us the length of padding padlen.
Then padding corresponds to last padlen + 1 bytes,
which are removed if the size of P is sufficient enough—
i.e., bytes for MAC tag and at least zero-length record
needs to remain.

Finally, the MAC tag can be recomputed and com-
pared with the MAC tag in the plaintext P. In case of
TLS a MAC tag is checked using the header information
and a sequence number that is kept by the receiver,
whereas in DTLS the sequence number is optionally
checked for replays. What if the padding format is
incorect? To avoid known timing side-channel attacks
the MAC should still be computed. But in this case it is
unclear where the padding ends and where the MAC tag
is located (the plaintext cannot be parsed). The solution
TLS and DTLS provide is to assume that there is no
padding and take last ¢ bytes of the plaintext P to be
a MAC tag. The remaining bytes are taken as record R
and MAC verification is performed on SQON||HDR||R.

If all goes well, the decrypted plaintexts are option-
ally decompressed and assembled back together to the
application-layer data that was sent. Else, if padding is
incorrect and error occurs during decryption TLS and
DTLS may handle it differently. TLS always treats it
as fatal and terminates the session and deletes all the
security parameters. DTLS may consider such errors as
non-fatal and the decryption process would continue,
which make the attacks this report describes easier to

apply.
2.6 How is MAC actually computed?

In this section a detailed description of computation
of a MAC tag is provided in order to understand how
the time differences between decrypting a message with
correct and incorrect padding format may be detected
and how they might be used to reveal some information
about plaintext length.

We already mentioned possible HMAC-H algorithms,
where H is MDS5, SHA-1, or SHA-256. Given a message
M and key K, the MAC tag T is computed as follows.
The hash function H used by HMAC is iteratively
applied twice, as

T = H((K @ opad)||H((K @ ipad)||M)),

where opad (outer padding) and ipad (inner padding)
are specific 64-byte values. The key K is zero-padded

to make its size 64 bytes before XOR operations are ex-
ecuted. Every hash function H is iterative and is applied
to every 64-byte chunk of a message M. The chunks
are then compressed and chained into the next iteration
step. In addition, every message M is encoded where an
8-byte sequence followed by padding is appended to it
before it is hashed. The padding is at least 1 byte in
length and extends the message to a (56 mod 64)-byte
boundary.

The timing profile of HMAC algorithm depends on
the hash function H used. A 55-byte messages or
smaller can be encoded in single 64-byte block, meaning
that HMAC will use total of 4 compression function
evaluations—2 for inner and 2 for outer hash operation.
A message M containing from 56 up to 119 bytes can be
encoded into two 64-byte blocks, meaning that HMAC
will use total of 5 compression function evaluations—
3 for inner and 2 for outer hash operation. In general,
an extra compression function evaluation is needed for
each additional 64 bytes of message data. Typically, a
single compression function evaluation time is measured
in nanoseconds.

Now lets remember that in TLS the MAC is com-
puted on plaintext after the padding is removed. This
implies that total running time of decryption process
might reveal some information about the size of the
plaintext, maybe even up to 64-byte accuraccy. Next
chapter describes a simple distinguishing attack which
exploits this vulnerability and serves as a warm up for
the plaintext recovery attacks described in Chapter (4}

3 DISTINGUISHING ATTACK

The goal of distinguishing attack is to distinguish the
true ciphertext from a random sequence. The attacker
can choose two messages, say mj and mso, where one
is encrypted into ciphertext C' and given to him. His task
is to find which message was encrypted. It is trivial for
an attacker to find such message if m; and ms are of
different sizes, so we assume both are equally long.

In following sections we show one construction of
such attack, analyze it, and discuss about applying it in
the real life scenario.

3.1 Construction of the Attack

First, lets describe the setting the attack will be con-
structed in. We use the block cipher AES with block size
b = 16 and explicit IV. The attack would be very similar
for 3DES with b = 8. The MAC tag T is computed using
one of the HMAC-H algorithms, where H is either MD5,
SHA-1, or SHA-256. The attacker chooses messages
m; and meo as shown in Figure E} Message m; has
32 arbitrary bytes and 256-byte padding of byte value
O0xFF. Message mo has 287 arbitrary bytes and byte
0x00 in the end as a padding. Because b = 16 both

messages can be divided into exactly 18 blocks (288/16
= 18).

My | arbitraty bytes| OxFF 0xFF ‘
0 32 288

m; arbitraty bytes ‘ 0x00 ‘
0 287 288

Figure 4.: The structure of messages used in distinguish-
ing attack on MEE-TLS-CBC construction of TLS.

Attacker submits m; and mg for encryption in CBC
mode and receives a ciphertext HDR||C'. Here C' is an
encryption of encapsulation of one of the messages, say
mq (d = {1,2}), a MAC tag T, and some padding pad.
Because messages are chosen to fit in exactly 18 blocks,
the additional bytes T'||pad are encrypted in separate
blocks from mg. Now attacker can form a new ciphertext
HDR||Chpew, Where Chey contains the first 288 bytes of
C—i.e., discards the blocks that contain T'||pad but keeps
the same 16-byte IV.

The attacker now sends HDR||C)ey for decryption and
observes the bytes at the end of P, he received:

o If Py.w ends with the valid 256-byte padding for-
mat OxFF...O0xFF, the encrypted message was
mq. The padding is then removed and the remain-
ing 32 bytes of plaintext correspond to a message
and a MAC tag. Size of the message and MAC tag
depends on the hash function H (see Table [Ta). It
is highly likely that MAC verification will fail and
that the attacker will receive an error message.

o If P,y ends with the valid 1-byte padding format
0x00, the encrypted message was ms. The padding
is removed and the remaining 287 bytes of plaintext
correspond to a message and a MAC tag. Size of
the message and MAC tag depends on the hash
function H, as seen in Table [Ib] Again, it is highly
likely that MAC verification will fail and that the
attacker will receive an error message.

3.2 Analysis of HMAC Algorithm

Now lets investigate how many evaluations of com-
pression function of HMAC algorithm occur in both
cases—when m; is encrypted and when my is encrypted.

In case of m; the message processed by, lets say
HMAC-MDS5, has 13 bytes for header and at most 16
bytes for MAC tag. Then total of 4 compression function
evaluations are required (2 for inner and 2 for outer
compression).

In case of mo the message processed by one of
the possible HMAC-H algorithms has 13 bytes for
header and at least 255 bytes for message. Recall that
4 evaluations are needed for messages of at most 55
bytes in length, and then one more evaluation per every

H | message [byte] | MAC tag [byte]
MD5 16 16
SHA-1 12 20
SHA-256 | 0 32
(a) A case when m; was encrypted.
H ‘ message [byte] ‘ MAC tag [byte]
MD5 271 16
SHA-1 267 20
SHA-256 | 255 32

(b) A case when mo was encrypted.

Table 1.: Possible message sizes given hash function H
used by HMAC algorithm and corresponding sizes of
MAC tags.

additional 64 bytes of a message is required. It is easy
to see that at least 8§ compression function evaluations
are needed for mo—at least 4 more than for m;.

Hence, we can assume that time required to produce
decryption error message in case of my is a little larger
than in case of my. And by little we mean couple of
microseconds. In theory this timing difference can be
exploited for a distinguishing attack on the MEE-TLS-
CBC construction used in TLS.

3.3 Real-Life Application

In the analysis of the attack we only considered time
taken by compression functions, whereas there are many
processing operations to take into account. For example,
the time taken to remove the padding is different for
two messages being processed; padding removal for
m; takes longer than for msy. This reduces the time
difference in MAC checking we described in analysis.
These ignored time differences are smaller than in MAC
checking and are not that important, thus the attack is
still possible.

In real-life application of this attack network jitter
might cause problems when measuring such small time
differences. An error message might have a small delay
of couple microseconds before the attacker receives
it, which is of same proportion as time differences
measured for MAC verification. On the other hand
when attack is performed against restricted environment
(e.g. 8-bit or 16-bit processor, or smartphone) the time
differences might be quite large due to slow operations
and network jitter would not affect the attack much.
Another example where the jitter might be significally
reduced is virtual environment, namely cloud. The at-
tacker could run a separate process on the machine
performing TLS decryption, and iteratively apply the
attack across number of sessions, with same message
being encrypted in each session, and extract the timing
signal (using statistical analysis).

In DTLS this attack can be applied in similar fashion.
Here, because DTLS might not treat decryption errors as

fatal, the attacker also needs to send a message that pro-
vokes the DTLS response (besides the ciphertext). Any
timing difference arising from decryption of ciphertext
then shows up as difference in the arrival time of the
response messages.

The timing signal can also be amplified if multi-
ple messages containing same ciphertext are sent at
once. Then the attacker could observe cumulative tim-
ing difference, because all messages will be processed
in the same way. For instance, if record R; takes 5
microseconds and recrod R, takes 6 microseconds to
decrypt, the time diference is 1 microsecond. If both
records are then each sent 5 times consecutively the
time taken for decryption of batch of R; records will
be 25 microseconds and 30 microseconds for batch of
R5 records. The time difference is now 5 microseconds,
which is easier to detect.

This attack is resistent to some other safety mecha-
nisms in (D)TLS as well. The authors of [1]] successfully
implemented distinguishing attack against OpenSSL im-
plementation of TLS and their results are presented in

4 PLAINTEXT RECOVERY ATTACKS

The attacks can be seen as an advenced version of
padding oracle attack [[L1]. Specifically, if TLS cipher
suite configuration uses HMAC-SHA-1 algorithm for
computing a MAC tag and certain message lengths are
carefully chosen, then TLS records containing one byte
of correct padding or invalid padding format will take
slightly longer to process than TLS records containing at
least two bytes of correct padding. Coincidentally, this
is possible because of the relation between the length of
TLS header, plaintext and MAC tag, and the cipher’s
block boundary and the hash compression function’s
block boundary. The timing difference is measured in
hash function compression evaluations. In our case the
timing difference corresponds to one evaluation or few
hundred clock cycles on a modern processor. The pro-
cessing time of a single record is measured as arrival
time of error messages during decryption. By repeating
the attack sufficiently often and using careful statistical
processing, the noise arising from network jitter and
other sources can be overcome and the different padding
conditions can be differentiated from one another. Thus
an attacker can distinguish messages containing at least
two bytes of correct padding from all other patterns. At
this point, a variant of the standard padding oracle attack
can be carried out.

The weakness of leaking the validity of padding
format from protocols in form of time difference is
called a timing side channel.

4.1 Construction of the Attack

In construction of this attack we focus on breaking
the TLS protocol, with details for DTLS to follow.
Furthermore, for easier presentation, we assume that the
block cipher is AES (b = 16); plaintext will be divided
in fewer bigger blocks, the CBC mode uses explicit
IVs, the MAC algorithm is HMAC-SHA-1 (¢ = 20) and
zero-length pad in case of incorrect padding (for MAC
verification). If the block cipher is 3DES (b = 8) the
non-IV blocks in ciphertext and plaintext are doubled.
Other setting variations are attacked in similar manner
with only more possibilities to try for recovering bytes.
Normally, we assume that the adversary is capable of
eavesdropping on (D)TLS-secured channels and can
inject any messages into the channel.

Now, say the attacker intercepted a ciphertext C?*t,
of what form should it be? Or rather, how many non-IV
blocks should C?'* have? Again, remember that MAC
computation of 55 bytes takes one evaluation of hash
compression function less than for byte sequence of
length from 56 to 119. So the attacker aims to modify
C?** such that the corresponding plaintext P2'* will
have enough padding that MAC will be computed on
55 bytes or less. Because CBC mode of encryption is
used, the attacker has to modify second-to-last block of
C?* in order to change last block of P3t*, Finally, if we
truncate 13 bytes of header (SON and HDR) and add 20
bytes for MAC tag the ciphertext needs to have at least
55 — 134+ 20 = 62 bytes. The closest larger multiple of
16 (we use AES) is 64, meaning we need to add 2 bytes
and C®** will have 4 non-IV blocks.

Next, let C’ and C* be second-to-last and last block
of C? respectively. The attacker wishes to recover P*,
which is the plaintext block that corresponds to C*. The
following holds:

P* = Dx(C) @ C".

If C* is the first block of a ciphertext then C’ may be the
last block of the preceding ciphertext or the IV. Then
we have

C** = HDR||Cy(= IV)||CL||C2||C"||C*

For any block B of ciphertext or plaintext we write B =
[BoBj...Bp—_1], where B; corresponds to i-th byte of B.
For example, we have C* = [C{CT...C;_].

We said the attacker will wants to modify second-
to-last block, C’, of C®% He can achieve this by
simply XOR-ing C’ with some 16-byte block X of his
choice. We denote modified ciphertext C*** with block
X as C*""(X) and corresponding 64-byte plaintext as
P2 (X). We have

Catt(X) = HDRHC()HClHCQHCI @ X||C* and
P (X) = Py||Py|| P3| Py,

where
Pi=Dg(CHa(C'aX)=P'aX (1)

is an important relation between unknown, target plain-
text block P* and plaintext of injected message. What
happens during decryption? Receiving party decrypts
C*"(X) block by block, removes padding and performs
MAC verification, which is extremely likely to fail and
produce an error message. There are three possible
scenarios that can occur:

1) Py has valid padding format of length 1 byte (i.e.
ends with 0x00). After padding is removed the
next 20 bytes are taken as a MAC tag T leaving
64 — 1 — 20 = 43 bytes of plaintext as the record
R. To verify the MAC a 13-byte header is added
to R meaning MAC verification will be performed
on 56-byte message.

2) P, has invalid padding format. In this case zero
padding is assumed; last 20 bytes are taken as T'
and MAC verification is performed on 44 + 13 =
57 bytes.

3) Py has valid padding format of length at least 2
bytes. In this case two or more bytes are removed
as padding and the next 20 bytes are taken as 7',
meaning the record R will have 42 bytes or less.
Adding the header the MAC verification will be
performed on at most 55-byte message.

The first two scenarios will take 5 evaluations of the
compression function for SHA-1 to verify the MAC,
while third scenario requires only 4 evaluations. Hence,
we would like to distinguish first two scenarios from
the third one by timing the appearance of the error
message on the network. Here we can see how a 13-
byte header together with 20-byte MAC are crucial for
making this timing side channel possible.

The most likely padding pattern in third scenario is
of length 2. Then the attacker can set the mask X so
that he triggers scenario 3 after sending C***(X) for
decryption. At this point the attacker knows that P, ends
with 0x01]|0x01 and can recover the last 2 bytes of
P* using the equation from (I). If padding is longer
than 2 bytes the attack can be repeated by modifying
the third-to-last byte of the mask X for recovering last
3 bytes. The same principle is applied for recovering
longer paddings.

This is possible because the attacker can freely se-
lect and send C?*'*(X). The byte-recovery procedure
is simple; for every possible combination of X4 and
Xi5 in X submit C**(X) which will surely produce
scenario 3. Note that in the worst case scenario at most
216 combinations are tried. Here the scenarios in which
X falls are decided with simple statistical test such as
basic percentile test or averaging over recorded times.

After recovering last 2 bytes of P* an efficient attack
for recovering the remaining bytes exists. It is called

padding oracle attack [L1]. In essence, one iteration of
an attack—for example—to extract third-to-last byte goes
as follows: set X714 and X;5 to the recovered bytes so
that P, ends with 0x02||0x02. Then generate X for
all possible X713 in the same fashion as before, except
that now at most 2% iterations are required. This will
produce a ciphertext that fits the third scenario, meaning
third-to-last byte of P, was set to 0x02. Now Pj; can
be recovered. For recovering the complete P* at most
14 - 28 trials are needed.

4.1.1 Real-Life Application: Shortly, this variant of
the attack most likely could not be carried out in
uncontrolled environment. First major problem is that
the timing difference between the scenarios is extremely
small-measured in processor clock cycles—and can eas-
ily be hidden by network noise. This problem can be
solved by executing the attack in parallel with several
sessions.

Second major problem is that TLS sessions are de-
stroyed after every attack. This problem can again be
solved by executing the attack in multi session manner
where the same plaintext is repeated in the same position
over every session.

4.2 Lucky 13 and the BEAST

Due to large consumption of TLS sessions a new
variant of an attack was proposed in combination with
the BEAST attack [[6]. Here the attack is restricted to
web browser communicating with web server over TLS
where TLS-protected HTTP cookies are targeted. To
perform this attack the user must first download malware
into his browser. This can be accomplished in various
different ways. The malware can then automatically ini-
tiate all the TLS sessions needed for the attack where the
browser will automatically append the targeted HTTP
cookie plaintext in each target ciphertext block. Then a
plaintext recovery attack with partially-known plaintext
(partial plaintext recovery attack) can be carried out.
In this attack the attacker knows one of the 2 last bytes
of P*, say P, and can then set the initial value of X
such that X14 = Pj, ® 0x01, so that when C*'*(X) is
decrypted, the second-to-last byte of P, already equals
0x01. Then he iterates over 2% possibilities to find such
X715 that Py has its last two bytes equal to 0x01||0x01
which triggers scenario 3. The rest of the bytes are
recovered as described before. This attack will establish
at most 15128 sessions, where L is the number of trials
used for each X.

When dealing with HTTP cookies its basic access
authentication, the username and password are Base64
encoded, meaning that each byte of plaintext has only 64
possible values. This results in significant reduction of
space of possibilities (28 per byte), leaving this variant
of the attack with at most 15L - 25 established sessions
to decrypt a block.

4.3 Applying the Attacks to DTLS

The attacks on DTLS are very similar to those on
TLS with few bigger differences. As discussed in[3.3]the
timing differences can be amplified and DTLS responses
might need to be provoke. The latter difference implies
that the entire attack against DTLS can be executed in
single session without having to repeat same plaintext
in the same position in the plaintext in every session.

Furthermore, there is no more waiting for Handshake
Protocol to reestablish the session. These differences
make execution of these attacks in uncontrolled envi-
ronments in real world possible.

5 EXPERIMENTAL RESULTS

In this chapter experimental results from [I]] are shortly
presented. Results were obtained in controlled environ-
ment where OpenSSL 1.0.1 was used on the client and
the server which were connected to the same VLAN.

5.1 Distinguishing Attack (TLS)

The authors executed an attack described in Section[3]
and obtained distribution of timing values of encryption
of my and my shown in Figure 5] Looking at mean
values of both distributions one could easily distinguish
between them-i.e., between mq and ma.

0.00006 F

0.00005

0.00004

0.00003 -

Probability

0.00002 -

0.00001

1.50 100 151 %100 1.52% 108 1.53 x10° 154100 1.55 % 108 1.56 x 10 1.57x 100
(Calculated by Attacker)

Hardware Cycles

Figure 5.: Distributions of processing time measure-
ments of my (left, red) and my (right, blue). The
processing times for m; are clearly smaller than for m..

For the attack a simple thresholding test was used.
After profiling and measuring L timing samples outliers
were filtered out. Then if the median value is smaller
than some threshold 7" return O and 1 otherwise. The test
results are in Table 2} Apparently the attack is reliable
even for small amount of samples; even for L = 1 the
success probability is quite high whereas for L = 27 the
attack will always work.

5.2 Plaintext Recovery Attacks (TLS)

This attack was not implemented due to too large
time consumption when establishing and destroying TLS
sessions. For example, the attack would need a total of
L - 2'6 trials which can make up to 2%? trials if L = 27

L | Success Probability
1 0.756
2 0.769
4 0.858
8 0.914
16 0.951
32 0.983
64 0.992
128 1

Table 2.: OpenSSL distinguishing attack success proba-
bilities.

is taken (if we want the attack to be successful). This
would take about 64 hours.

5.3 Plaintext Recovery Attacks (DTLS)

For attacks against DTLS the authors used ampli-
fication techniques where the attacker sends a batch
(n) of constructed packages, a DTLS Heartbeat request
immediately after and then waits for Heartbeat response
(instead of error message). The attack is repeated L
times for each mask value. For the attack in this setup
n = 10 is a good choice but should be larger if the
server and client (attacker) are further apart. Note that
for n = 1 we closely simulate what would happen with
TLS-only the network noise tends to be higher with
DTLS.

When recovering P}s when Py, is known and n = 10
the attack is very effective as shown by percentile-based
success probabilities in Figure [6] For L = 8 the attacks
will recover unknown plaintext byte with only 2*! trials.

1o

n

Q

-

2 08f

-

a

-

Q 06} | .
8 I 2" Trials (L=2°)
S el 4/ 212 Trials (L=2")
o U 21% Trials (L=2%)
5:] 02l Il | 2" Trials (L=2°)
Q |

0 "

S ket

g oo

, ,
"0 20 40 60 20 100

Percentiles

Figure 6.: Percentile-based success probabilities in case
of OpenSSL DTLS partial plaintext recovery where Py,
is known and n = 10.

The authors implemented a 2-byte recovery attack
against OpenSSL DTLS which is essential for full text
recovery attack (and the harder part). For n = 10 and
L = 8 (29 trials) the attack is again very effective,
with success probability of recovering Py, and Py is
0.93 (see Figure [7). Hence, it is highly probable that
the full plaintext attack can be executed.

To conclude, for n = 1 the attack serves as experi-
mental model for TLS. From results in Figure [§] we see

that 2-byte recovery is very reliable if 223 (L = 27)
trials are used. L = 25 also gives promising results with
success probability of more than 0.8 but for L = 2° the
success probabilty already falls to around 50%.

10r
08

06

-@-2' Trials (L=2%)
w22 Trials (L=2%)

#- 22! Trials (L=2%)

Success Probabilities

Percentiles

Figure 7.: This figure shows percentile-based success
probabilities for OpenSSL DTLS 2-byte (P} and F;5)
recovery, where n = 10.

. “'Yﬁﬁ" 5 s x_“lA“‘ "!\%Q
A
(F s0* %02 \ i
08F / .. \ H
‘lt 4 ter, A |
A \
| \ L - 2% Trials (L=2*
osk ‘ ‘ $.Q‘ \ *‘I Trials (L: i)
M * ., | - 22! Trials (L=2%)
\|

~#- 272 Trials (L=2%)
—4— 223 Trials (L=27)

—¥- 224 Trials (L=2%)

| # \

| & | . A
U‘ $ ‘l.‘ O\
w? ‘.‘X*
" A\

o2t ,!K‘&, R\

Percentiles

-2-2% Trjals (L=2")

Success Probabilities

Figure 8.: This figure shows percentile-based success
probabilities for OpenSSL DTLS 2-byte (P}, and F;5)
recovery, where n = 1.

6 CONCLUSION

In this project we provided some main building blocks of
the TLS and DTLS protocols, namely Record Protocol
and described a timing side channel attack against it.
It turns out that relationship between MAC tag size,
block size and 13-byte header enables the attacker to
construct ciphertexts in such way that, when decrypted,
information about validity of padding is leaked. This
information is in the form of arrival of error messages
on the network in case of TLS or Heartbeat response in
the case of DTLS. After enough trials it is possible to
recover plaintext.

We have discussed about drawbacks of this attack
in 3:3] and [F.1.1] The biggest drawbacks are extremely
small timing differences which can easily be concealed
by network jitter and enormous amount of sessions (in
case of TLS). The latter causes the attack against TLS
to be unrealistic as even in controlled environment the
attack would take about 64 hours. On the other hand

attacks against DTLS are possible due to only one
session needed and amplification techinquest that make
timing differences easier to detect.

Some possible countermeasures are adding random
time delays to the decryption process which would make
statistical analysis of timing differences useless. This
was shown to not solve the problem [2]. One possible
solution is that every decryption process would take
the same amount of time no matter the configuration
parameters and sizes.

In case of TLS RC4 stream cipher could be used
instead of CBC-mode encryption but has some other
vulnerabilities.

Switching from MEE-TLS-CBC to using a dedicated
authenticated encryption algorithm like AES-GCM or
AES-CCM which were standardised for use in TLS will
make the attacks described here useless. This novelties
however can bring implementation errors or other, yet
unknown, attacks.

REFERENCES

[1]1 Al Fardan, N. J. and K. G. Paterson: Lucky thirteen: Breaking
the tls and dtls record protocols. In 2013 IEEE Symposium on
Security and Privacy, pages 526-540. IEEE, 2013.

[2] Albrecht, M. R. and K. G. Paterson: Lucky microseconds: A
timing attack on amazon’s s2n implementation of tls. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 622-643. Springer, 2016.

[3] Allen, C. and T. Dierks: The TLS Protocol Version 1.0. RFC

2246, January 1999. https://rfc-editor.org/rfc/rfc2246.txt.

Canvel, B., A. Hiltgen, S. Vaudenay, and M. Vuagnoux: Pass-

word interception in a ssl/tls channel. In Boneh, D. (ed-

itor): Advances in Cryptology - CRYPTO 2003, pages 583—

599, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg,

ISBN 978-3-540-45146-4.

Dierks, T. and E. Rescorla: The transport layer security (tls)

protocol version 1.2. RFC, 5246:1-104, 2008.

Duong, T. and J. Rizzo: Beast: Surprising crypto attack against

https. Blog, September, 42:45-47, 2011.

F., Alan O., Philip K., and Paul C. K.: The Secure Sockets Layer

(SSL) Protocol Version 3.0. RFC 6101, August 2011. https://rfc-

editor.org/rfc/rfc6101.txt.

Islam, M., M. Hossain, M. Hasan, M. Shahjalal, Y. M. Jang,

et al.: Design and implementation of high-performance ecc

processor with unified point addition on twisted edwards curve.

Sensors, 20(18):5148, 2020.

Modadugu, N. and E. Rescorla: The design and implementation

of datagram tls. In NDSS, 2004.

[10] Paterson, K. G., T. Ristenpart, and T. Shrimpton: Tag size does
matter: Attacks and proofs for the tls record protocol. In Lee, D.
H. and X. Wang (editors): Advances in Cryptology — ASIACRYPT
2011, pages 372-389, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg, ISBN 978-3-642-25385-0.

[11] Vaudenay, S.: Security flaws induced by cbc
padding—applications to ssl, ipsec, wtls... In International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 534-545. Springer, 2002.

[4

=

[5

[t}

[6

=

[7

—

[8

—

[9

—

https://rfc-editor.org/rfc/rfc2246.txt
https://rfc-editor.org/rfc/rfc6101.txt
https://rfc-editor.org/rfc/rfc6101.txt

	Introduction
	TLS and DTLS Protocols
	TLS Protocol Architecture
	TLS Handshake Protocol
	TLS Change Cipher Spec Protocol
	TLS Alert Protocol
	TLS Record Protocol
	Encryption
	Decryption

	How is MAC actually computed?

	Distinguishing Attack
	Construction of the Attack
	Analysis of HMAC Algorithm
	Real-Life Application

	Plaintext Recovery Attacks
	Construction of the Attack
	Real-Life Application

	Lucky 13 and the BEAST
	Applying the Attacks to DTLS

	Experimental Results
	Distinguishing Attack (TLS)
	Plaintext Recovery Attacks (TLS)
	Plaintext Recovery Attacks (DTLS)

	Conclusion
	References

