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Abstract
In this work strong primes and the incentives to use them in

cryptography are described. An algorithm presented by J. Gordon in 1985
is studied and implemented with slight modifications. Prime numbers
generated with said algorithm are tested for compatibility with RSA
cryptosystem.
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1 Introduction
Prime numbers are an essential part of cryptography and their properties are
the building blocks of many cryptosystems. One such system is RSA1 [8], cf.
Stinson and Paterson [9]. Most attacks on RSA try to factor n = pq and
ϕ(n) = (p−1)(q−1), where p, q ∈ P. Failing to protect the system against such
attacks could have negative consequences, e.g. an attacker may even obtain
private keys. Therefore, it is of great importance to increase security against
different attacks, which is why additional conditions for primes p and q were
established. Primes satisfying those conditions are called strong primes and will
be discussed in this project.

Our goal is to define and generate strong primes and compare them to
modern RSA standards (e.g. FIPS 186-4 [11]). We do this using a modified
version of the Gordon algorithm [2].

In the paper we define strong primes and explain the benefits of added
conditions in Section 2, then we construct the algorithm in Section 3 and give
an overview of the implementation in Section 4. In Section 5 the distribution
of generated primes is analyzed and in Section 6 strong primes are tested for
compatibility with RSA.

2 Strong primes
Wementioned that several known attacks on the RSA caused additional conditions
to be added to prime numbers used for its keys. The first such attack is the
Pollard p-1 algorithm [7], cf. Stinson and Paterson [9]. It is a factoring
algorithm and its time complexity depends on the largest factor of the input
integer. Therefore the algorithm will be inefficient if for some p ∈ P, p− 1 has
a large enough factor.

The second attack is Williams’ p+1 algorithm [10]. It is analogous to the
previous attack. The difference is, it’s the most efficient when p+ 1 is smooth,
i.e. it contains only small factors. To protect the system against such attacks
the prime numbers p, q ∈ P used for RSA should be such that p + 1 and q + 1
both have a large enough factor.

The final condition increases security against cycle attacks, Ferrucci and
Pornin [1], and Killeen [4]. Such attacks start by selecting a message and
encrypting it until at some step the plaintext is obtained again, while also
keeping track of the number of iterations. From this we can obtain the private
key. Described attack will always work but it is also inefficient for modern key
bit lengths. The algorithm can be additionally slowed down by choosing such
primes p and q for RSA, that for large factors p1 and q1 of p − 1 and q − 1
respectively, p1 − 1 and q1 − 1 also have large factors.

2.1 Definition of strong primes
An integer p ∈ N is a strong prime if it satisfies the following conditions:

1Rivest-Shamir-Adleman is one of the first public-key cryptosystems and has been used for
over 40 years.
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• p is prime;

• p is sufficiently large to be used in cryptography;

• p− 1 has a large prime factor, say r;

• p+ 1 has a large prime factor, say s;

• r − 1 has a large prime factor, say t.

If p−1 has a large prime factor r, then p = Kr+1 for some K ∈ N. Because
p and r are large primes, therefore not 2, they are odd and K must be even.
A strong prime can therefore only be a succifiently large odd prime with the
following properties:

1. p ≡ 1 (mod 2r),

2. p ≡ −1 (mod 2s),

3. r ≡ 1 (mod 2t),

where r, s and t are large primes. We will use this notation for the rest of the
project, unless stated otherwise.

3 Algorithm
The algorithm requires a random number generator, which will not be described
in the project and it will be assumed that we can generate random integers of
desired bit length. A strong prime will be constructed in four steps:

1. choose random seeds a and b,

2. from a and b generate random primes s and t, where s > a and t > b,

3. from t construct r,

4. from r and s construct strong prime p.

3.1 Generating s and t

Say we have random seeds a and b. Primes s and t will be the first prime numbers
greater than a and b respectively. For s we therefore traverse through integers
larger than a, starting at a+ 1 and check for primality at each step. The latter
can be done using probabilistic algorithms such as Solovay-Strassen Algorithm
and Miller-Rabin Algorithm, Stinson and Paterson [9]. We repeat the steps
for t, this time starting at b+ 1.
Additionally we can only traverse through integers that are not divisible by the
first k prime numbers for some k ∈ N (e.g. first 54 primes, i.e. all 8-bit primes).
By doing this we only check for primality on

∏54
i=1(1 − 1

pi
) ≈ 0.10035 of all

integers,2 where pi is the i-th prime number.
We can ensure that s and t will have the same number of bits as a and b,

say n, by picking random seeds in the range [2n−1, 2n−1 + 2n−2). This leaves
us at least 2n − (2n−1 + 2n−2) = 2n−2 integers in which to find prime numbers
s and t before bit length would increase.

2This is an approximation, since there is potentially some overlap. In practice it turns out
to be accurate enough.
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3.2 Constructing r from t

Because the prime r satisfies condition 3 in Section 2.1, we know that it will be
an element of {2Lt+ 1}∞L=1. We could find the smallest L for which r = 2Lt+ 1
is prime, but we would have difficulties controlling the bit length of r, since
every time L doubles, r gains a bit.
We therefore wish to find bounds Llow and Lhigh that for every ` ∈ [Llow, Lhigh)
the value of 2`t+1 is of the desired bit length. The first ` > Llow, s.t. r = 2`t+1
is prime, is then chosen. If the size of t is chosen appropriately, the size of the
interval from Llow to Lhigh is large enough for the probability of not finding
such prime r of desired bit length to be nearly zero. More on this in Section
4.1, including the procedure of finding Llow and Lhigh.

Similar conclusions can be made about the distribution of prime numbers r
as in Section 5.

3.3 Constructing p from r and s

Because the prime p follows conditions 1 and 2 in Section 2.1, it will be an
element of both {2Kr+1}∞K=1 and {2Ls−1}∞L=1. In other words p = 2kr+1 =
2`s− 1 for some k, ` ∈ N. We will find such p using the following theorem.

Theorem 1. If r and s are odd primes, then p satisfies:

p ≡ 1 (mod 2r)
p ≡ −1 (mod 2s),

(1)

if and only if p is of the form

p = p0 + 2krs, (2)

where k ∈ N,

p0 =
{
u(r, s) if u(r, s) is odd,
u(r, s) + rs if u(r, s) is even,

(3)

and u(r, s) = (sr−1 − rs−1) mod rs.

Proof. Let p ∈ N be any integer satisfying (1). Because p− 1 is divisible by 2r,
it means it’s also divisible by r. Same goes for p + 1 and 2s. We then get a
weaker condition

p = jr + 1 = `s− 1 for some j, ` ∈ N. (4)

We observe that for even j, ` we get the condition (1). This means that odd
numbers satisfying (4) also satisfy (1). We therefore want to prove that solutions
of (4) are of the form u(r, s) + krs for some k ∈ N.

Using Fermat’s Little Theorem, Stinson and Paterson [9], we get the
following congruences:

sr−1 ≡ 1 (mod r),
rs−1 ≡ 1 (mod s).
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Trivially, it also holds that sr−1 ≡ 0 (mod s), rs−1 ≡ 0 (mod r), rs ≡ 0 (mod s)
and rs ≡ 0 (mod r). From this it follows that u(r, s) satisfies (4).

We now show that all solutions of (4) are of the form u(r, s) + krs. We
prove this by choosing u = jr + 1 = `s − 1 and u′ = j′r + 1 = `′s − 1 for
some j, j′, `, `′ ∈ N, this means that u and u′ satisfy (4). We observe u ≡ u′ ≡
1 (mod r) and u ≡ u′ ≡ −1 (mod s). So

u− u′ = (1 mod r)− (1 mod r)
= 0 mod r
= kr,

u− u′ = (−1 mod s)− (−1 mod s)
= 0 mod s
= k′s,

(5)

for some integers k, k′. From this it follows that u−u′ is a multiple of lcm(r, s) =
rs, since r and s are prime. Because u(r, s) satisfies (4), u and u′ must be of
the form u(r, s) + ksr.

We now know that p will be an element of {p0 + 2Krs}∞K=1, where p0
was defined in Theorem 1. The same issues with bit sizes may arrise as with
constructing r. We thus use the same method of finding an interval [Klow,Khigh),
where Klow can be adjusted to be the first integer such that p0 + Klowrs ≥√

2 · 2n−1 to comply with FIPS PUB 186-4, where n is the desired bit length.
It turns out for this to be achievable for a strong n-bit prime p, primes r, s

and t should roughly have (n/2)-bits each. Sizes of r and s should also be equal
and while lowering them increases the probability of finding a strong prime p
with n bits, it also lowers its security. Controlling the bit length of s does not
present any problems and we have shown how to construct r of desired size.
Exact values are calculated in Section 4.1.

3.4 Time complexity
Denote with Tprime(n) the time needed to check if a n-bit integer is prime with
a method of choice, and with Texp(n) the time complexity of exponentiation.

The time complexity of step 3.1 depends on how much preprocessing is
done, i.e. calculating primes to be used for skipping integers that are not
potential primes. Say that we only consider P ∈ (0, 1] of integers. Using
Prime number theory, Stinson and Paterson [9], we need to check for primality
for P ln(x) integers.3 For a n-bit prime number, this adds to P ln(2n) =
nP ln(2) ≈ 0.7Pn. For each of those nP ln(2) integers we use a primality test
with time complexity Tprime(n), therefore the first step costs nP

2 ln(2)Tprime( n
2 )

operations for each prime.
Step 3.2 is similar to Step 3.1 as far as the time complexity is concerned,

since we are checking roughly the same number of integers.
The final step first requires two exponentiations, each with time complexity

Texp(n), which is dominated by the time spent searching for primes. Additionally,
we need to find a prime, which takes nP ln(2)Tprime(n) operations.

3Probability of a prime in vicinity of x is estimated with d
dx

x
ln x

≈ 1
ln x

for large enough x.
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The algorithm searches for a n-bit prime p, and for roughly n
2 -bit primes t, r

and s. Together then, ignoring everything but time spent searching for primes,
we obtain

nP ln(2)Tprime(n) + 3n2P ln(2)Tprime(n2 ). (6)

If we now assume that a probabilistic algorithm for primality testing is used
(e.g. Miller-Rabin algorithm), the time complexity is of order 3. This means
that the total time complexity equals 19

16nP ln(2)Tprime(n), which is 3
16 = 0.1875

cost to performance compared to searching for a random n-bit prime.

4 Implementation of the algorithm
Our algorithm, see [5], takes the following inputs:

• n - desired number of bits for a strong prime,

• rand - a function that takes two integers m0 and m1 and returns a random
integer in the range [m0,m1),

• rep1 - an integer greater than 0 indicating the number of iterations of
Miller-Rabin Algorithm for primality testing of r, s and t,

• rep2 - an integer greater than 0 indicating the number of iterations of
Miller-Rabin Algorithm for primality testing of p.

Output consists of prime numbers p, r, s and t described in Section 2.1.

4.1 Bit sizes
The algorithm starts by calculating the bit lengths of all prime numbers that
will be constructed. We can do this in the reverse order, that is done by first
working out what the bit size of r and s has to be so that constructing p will be
possible in 1 − ε cases for some error ε. The algorithm was implemented with
ε of at most 2−80 to comply with FIPS PUB 186-4. Below is the description of
how this is achieved.

4.1.1 Determining bit size of t

Let us denote with n1 the number of bits of prime number r defined in Section
2.1. Using Prime Number Theorem, Stinson and Paterson [9], we know that
the number of primes smaller than x is approximately x

ln x . Using this we can
estimate the number of n1 bit primes to be

2n1

n1 ln 2 −
2n1−1

(n1 − 1) ln 2 = n1 − 2
n1(n1 − 1) ln 22n1−1,

which means that the probability of randomly choosing a prime is

P := P [x is prime] = n1 − 2
n1(n1 − 1) ln 2 .
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The probability of choosing a composite number is therefore 1 − P . We want
to know the number of integers that need to be tried for the probability of not
finding a prime to be less than ε, which can be determined from (1− P )k < ε.
The latter is equivalent to k > log1−p ε, where k is the number of attempts. It
turns out that this condition is always fulfilled for ε = 2−80 if k ≥ 2dlog2 n1e+6.
Furthermore, the probability of failure for such k is at most 2−101 for n1 ≤ 128,
2−124 for n1 > 128 and 2−133 for n1 > 256. Because we are traversing through
n1-bit integers with a step 2t and we want at least 2dlog2 n1e+6 steps, prime
number t can be at most (n1 − dlog2 n1e − 7) bits long.

4.1.2 Determining bit size of r and s

We mentioned that we want r and s to be of equal bit size. Let n1 still
be the bit length of primes r and s and let n be the number of bits of p.
We’re interested in the relation between n and n1. Similarly to 4.1.1, we use
Prime Number Theorem. The difference is, we are now looking for a n-bit prime
that is greater than

√
2 · 2n−1. There are 2n

n ln 2 −
2n− 1

2

(n− 1
2 ) ln 2 such primes and the

probability of finding a prime is P = 1
(n− 1

2 ) ln 2 −
√

2
n(2n−1)(

√
2−1) ln 2 . Because 2rs

can be 2n1 or 2n1 + 1, we use the following formula n1 = bn−dlog2 ne
2 c − 4 to

obtain the error probability of at most 2−133 for n ≥ 512. Values for the most
common bit sizes are shown in Figure 1.

n n1 n2

512 247 232
1024 503 487

n n1 n2

1536 758 741
2048 1014 997

Figure 1: Table showing the correlation between bit sizes.

4.2 Primality testing
Our implementation is using Miller-Rabin Algorithm for primality testing.
By choosing the number of iterations we control the error probability, that is
the probability that the algorithm returns True when its input was composite.

4.3 Preparation for the construction of r and p

In both cases, we are first adding some even number ` to the starting value until
the desired bit length is reached (` = 2t for r and ` = 2rs for p). This process is
sped up by finding the maximum power k of 2, s.t. 2k` is a bit shorter than the
desired bit length. We then add 2k` to the starting value until the next addition
would bring it to the desired bit length. The value of k is then decreased by 1
and the procedure is repeated while k ≥ 0. Finally, we get an integer, s.t. when
we add ` to it, we get the smallest value of desired size and form. For generating
the prime r we use k = n1−n2− 2 and for the prime p we use k = n− 2n1− 1.

This procedure logarithmically reduces the number of iterations needed before
the algorithm can start checking for primality.
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5 Density of generated primes
We observe that primes generated with the algorithm described in 3 are condensed
around 2n− 1

2 , where n is the number of bits. A question may arise whether or not
this can be used by attackers. Let us sketch the idea of why prime distribution
has a higher density at that point and show how small of a subsection of n-
bit integers we need to check as an attacker to find 1 − ε of all keys for some
ε ∈ (0, 1).

We know, that the probability of an n-bit integer greater than 2n− 1
2 being

prime is

pn ≈
(
√

2− 1)n−
√

2
2

ln 2 · (
√

2− 1)n(n− 1
2 )
.

We are now interested in how many prime candidates, i.e. number of steps in
Section 3.3, we expect to try before the probability of failure, i.e. not finding a
prime, is at most ε. Therefore, we are looking for a value k s.t. (1− pn)k = ε,
which means that

k = log1−pn
ε = ln ε

ln(1− pn) ≈ −
ln ε
pn

,

where we used the Taylor series for natural logarithms to approximate ln(1−pn)
with −pn.

The last part is calculating the minimum number of steps (this will ensure
we get the worst case scenario) we can take when constructing n-bit prime as
described in 3.3. Let us assume that n is even and it also has an even amount
of bits (similar for odd number of bits), then r and s have n1 = n−log2 n

2 −4 bits
each and 2rs has at most 2n1 + 1 = n− log2 n− 7 bits. The minimum number
of steps available is therefore

kmax = (
√

2− 1)2n− 1
2

2n−log2 n−7

= (
√

2− 1)2log2 n+ 13
2

=
√

2(
√

2− 1)26n.

We now answer the initial question and obtain the subinterval of n-bit primes
that we are interested in as k/kmax. So

k/kmax = − ln ε√
2(
√

2− 1)26npn

= − ln ε
ln 2 · n(n− 1

2 )(
(
√

2− 1)n−
√

2
2
)√

226n
.

Since we wish to know how this ratio behaves when n grows, we look at the
limit

lim
n→∞

k/kmax = − ln ε · ln 2√
2(
√

2− 1)26
. (7)

The values based on ε can be seen in Figure 2.
We conclude that an attacker that would not mind missing ε keys would

only need to check a small portion of the n-bit integers and that the size of that
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Figure 2: Size of the subinterval that contains 1− ε of generated primes.

subinterval is in logarithmic relation to ε. However, we showed in (7) that the
limit does not converge towards 0 but rather to some constant Cε > 0 (at fixed
ε) and therefore does not have a noticable effect in practice. This is because we
can increase the size of the key exponentially, thus also exponentially increasing
the absolute size of the subinterval the attacker would have to check.

6 Compatibility with RSA
In this section our implementation will be compared to the conditions specified
in FIPS PUB 186-4. The source requires prime numbers to satisfy a set of
conditions:4

• integers p and q are randomly generated prime numbers,

• (p− 1) has a prime factor p1,

• (p+ 1) has a prime factor p2,

• (q − 1) has a prime factor q1,

• (q + 1) has a prime factor q2,

where p1, p2, q1 and q2 are of the appropriate bit length. Primes generated with
the algorithm described in Section 3 satisfy these conditions by definition and
also add additional conditions.

4Primes satisfying the conditions are labeled as Primes with Conditions.
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Next we look at the bit sizes of prime factors. Translating Table B.1 from
FIPS PUB 186-4 to our notation in Figure 3, we observe that the prime numbers
and their prime factors are of correct bit size.

n min max 2n1

512 101 495 494
1024 141 1006 1006
1536 171 1517 1516

Figure 3: Maximum bit sizes of prime factors in relation to the size of primes p
and q.

The last requirement regarding the process of generating a prime number is
the inequality

√
2 · 2n−1 ≤ p ≤ 2n − 1, which we took into account in Sections

3.3 and 4.1.2.
Presented algorithm should therefore comply with all of the requirements

for generating keys for RSA. The code for a proof of concept can be found on
github [5].

7 Conclusion
We have presented an algorithm for finding strong primes with relatively small
loss to computing time (as shown in Section 3.4) compared to finding random
primes of the same size. The algorithm was implemented in Python [5]. Primes
generated by this method are also compatible with RSA standard [11]. However,
they do have an additional condition which may be redundant in modern times
and may only increase the algorithms time complexity.
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