
UNIVERSITY OF LJUBLJANA

FACULTY OF COMPUTER AND INFORMATION SCIENCE

E-VOTING

AUTHOR

KATARINA MILAČIĆ

Cryptography and Computer Security

Prof. dr. Aleksandar Jurišić Ljubljana, January 2018

2

Contents

Contents .. 2

1 Introduction .. 3

2 Properties of a voting system ... 3

3 Underlying cryptography .. 4

3.1 Digital Signature .. 4

3.2 Blind Signature .. 5

3.3 Mix-nets .. 6

3.4 Zero-knowledge proofs ... 6

3.4.1 Zero-knowledge proof of decryption .. 6

3.5 Shamir’s Secret Sharing Scheme ... 7

3.5.1 Secret Sharing Homomorphism .. 8

3.6 Homomorphic encryption ... 8

3.6.1 ElGamal Encryption Scheme ... 9

3.6.2 Paillier Encryption Scheme ... 11

4 Schemes Based on Homomorphic Encryption .. 13

4.1 Cramer-Gennaro-Schoenmakers scheme ... 13

4.2 Schoenmakers scheme ... 15

4.3 Hamill and Snyder Scheme ... 16

4.4 Scheme based on Secret Sharing Homomorphism ... 18

5 Security ... 20

6 Conclusion ... 22

Bibliography .. 23

3

1 Introduction

Along with the development of technology, electronic voting has been intensively studied.

Up to now, many electronic voting schemes have been proposed, and both the security and

the effectiveness have been improved. E-voting offers many advantages regarding

technology, speed, privacy and security. In the following chapters I will present cryptography

that lies behind e-voting, schemes that have been tested and finally conclude project with

some security overview. Special attention is given to schemes that use homomorphic

properties of encryption.

2 Properties of a voting system

Every voting system consists of following stages:

1) Registration - In the registration stage the authorities determine who is eligible to

vote, maintain proper lists of the registered voters;

2) Validation - when the election begins, administrators validate the credentials of those

attempting to vote;

3) Collection - At this stage the voted ballots are collected before the final stage of the

tally;

4) Tallying - At this stage the accumulated votes are counted, agreed upon and

published.

Every voting system needs to fulfil the following requirements:

Availability: A voting system must remain available during the whole election and must

serve voters connecting from untrusted clients.

Eligibility: Only elective voters are allowed to cast one valid vote. Therefore no double votes

are allowed.

Integrity: The integrity of the vote must be guaranteed.

Privacy: The connection between the vote of a user and the user herself must not be able

without her help.

Fairness: Ensures that no (partial) results are published before the tallying has ended.

Receipt Freeness: To reduce coercion, the user does not gain any information about her vote.

Therefore she cannot prove her vote to anybody.

4

Correctness: Election results must be counted properly and published correctly.

Robustness: The system should be able to tolerate faulty votes.

Universal Verifiability: After the tallying process, the results are published and can be

verified by everybody.

Voter Verifiable: The voter herself must be able to verify that her vote was counted

properly.

Coercion: Voting Systems must provide security aspects to prevent a coercer being able to

force the voter to place a vote for a specific party, candidate etc. In theory a voting system

must be built coercion-resistant to guarantee that a voter can place her vote as intended even

in the presence of a coercer. This implies that even sold or leaked credentials cannot be used

to place ballots.

3 Underlying cryptography

This chapter represents a brief introduction into cryptography behind e-voting systems, and

the goal is to give reader a better understanding of schemes that are presented in chapter 4.

Following topics will surely be familiar to a person who has some knowledge in

cryptography.

3.1 Digital Signature

Digital signature (1) is used to authenticate that the message comes from a particular sender.

This is done by attaching a code that acts as a signature. This signature guarantees the source

and the integrity of the message.

E-Voting employs RSA encryption. Public and private key are utilized to perform encryption

and decryption.

Key generation:

- choose two prime numbers 𝑝, 𝑞, 𝑛 = 𝑝𝑞, 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)

- choose public exponent 𝑒 which is less than and relatively prime to 𝜑(𝑛)

- 𝑑 = 𝑒−1mod 𝜑(𝑛)

- The public key is {𝑛, 𝑒} and the private key is {𝑛, 𝑑}.

5

The equation for encryption and decryption are as follows:

Encryption:𝐶 = 𝑀𝑒mod 𝑛
Decryption: 𝑀 = 𝐶𝑑mod 𝑛

In e-voting, digital signature is created by using RSA encryption. The process begins with the

hashing of the message, 𝑀, to produce a message digest, 𝐻. The digest is then encrypted

using the sender’s private key {𝑛, 𝑑} to produce the signature

𝑆: 𝑆 = 𝐻𝑑mod 𝑛

To verify the message, the receiver will hash the message, 𝑀 by using the same digest

function. At the same time, the signature, 𝑆 is decrypted using the receiver’s public key:

𝐻 = 𝑆𝑒mod 𝑛

The results of the two processes are then compared. If they are equal then the message is

authenticated and the integrity of the message is maintained.

3.2 Blind Signature

A blind signature (1) is a type of digital signature that allows a person to get another person

to sign a message without revealing the content of a message. In E-Voting the signature is

used to authenticate the voter without disclosing the content of a ballot. Hence the authority

whose function is to verify the eligibility of a voter will not know whom a voter votes for.

A voter is required to get the signature of a validator when he votes. To ensure the secrecy of

his ballot, a voter casts a ballot, B, blinds a ballot using a random number and sends it to the

validator.

Let (𝑛, 𝑒) be the validator’s public key and (𝑛, 𝑑) be his private key. A voter generates a

random number 𝑟 such that 𝑔𝑐𝑑(𝑟, 𝑛) = 1 and sends the following to the validator:

𝐵′ = 𝑟𝑒𝐵 mod 𝑛

The random number 𝑟 conceals the ballot from the validator. The validator then signs the

blinded ballot after verifying the voter. The signed value is as follows:

𝑆′ = (𝐵′)𝑑 = 𝑟𝐵𝑑 mod 𝑛

After receiving the validated ballot, the voter unblinds the ballot, to get the true signature, S

of the validator for the ballot, by computing,

𝑆 = 𝑆′𝑟−1 mod 𝑛 = 𝐵𝑑

6

3.3 Mix-nets

A mix-net (2) is a multi-party protocol which is used in e-voting or other applications which

require anonymity. It allows a group of senders to input a number of encrypted messages to

the mix-net, which then outputs the messages in random order. It is common to construct

mix-nets from shuffles.

A shuffle of ciphertexts 𝐶1, … , 𝐶𝑁 is a set of ciphertexts 𝐶1′, … , 𝐶𝑁′ with the same plaintexts

in permuted order. Shuffle protocols constructed from homomorphic encryption schemes

allow us to for a given public key 𝑝𝑘 , messages 𝑀1, 𝑀2 , and randomness 𝜌1, 𝜌2 the

encryption function satisfies 𝐸𝑝𝑘(𝑀1𝑀2, 𝜌1 + 𝜌2) = 𝐸𝑝𝑘(𝑀1, 𝜌1)𝐸𝑝𝑘(𝑀2, 𝜌2).

A common construction of mix-nets is to let the mix-servers take turns in shuffling the

ciphertexts. If the encryption scheme is semantically secure the shuffle 𝐶1′, … , 𝐶𝑁′ output by

a mix-server does not reveal the permutation or the messages.

Potential problem here is that a malicious mix-server in the mix-net could substitute some of

the ciphertexts without being detected. In a voting protocol, it could, for instance, replace all

ciphertexts with encrypted votes for candidate X. Therefore, it is necessary to construct an

interactive zero-knowledge argument that makes it possible to verify that the shuffle was

done correctly (soundness), but reveals nothing about the permutation or the randomizers

used (zero-knowledge).

3.4 Zero-knowledge proofs

In certain situations it is needed to prove some statement to someone without revealing any

extra information, and zero-knowledge proofs allows us that. Zero-knowledge proofs (3) are

stated as protocols for prover and verifier such, that when executed successfully, verifier

becomes convinced that the statement holds. Still, verifier cannot extract any useful

information besides the correctness of the statement.

3.4.1 Zero-knowledge proof of decryption

Example: A decryption of an ElGamal ciphertext can be proven using Chaum-Pedersen

protocol (CP92) for proving plaintext equality (3). To prove that a given ciphertext 𝑐 = (𝑥, 𝑦)

encrypts a plaintext 𝑚, the prover shows that log𝑔 𝑦 = log𝑥
𝑦

𝑚⁄ :

Prover:

 (1) selects 𝑤, 𝑎 ∈ 𝑍𝑞, 𝑦 = 𝑔𝑎, (
𝑦

𝑚
) = 𝑥𝑎

(2) sends (𝐴, 𝐵) = (𝑔𝑤, 𝑥𝑤) to the verifier.

Prover: answers with: 𝑡 = 𝑤 + 𝑎𝑐

Verifier: checks if:

 𝑔𝑡 = 𝐴𝑦𝑐

𝑥𝑡 = 𝐵(
𝑦

𝑚⁄)
𝑐

7

3.5 Shamir’s Secret Sharing Scheme

Secret sharing protocol (4) is used in schemes presented in chapter 4, and for better

understanding here is presented brief overview.

Secret sharing protocol allows the shares of the secret to be distributed to 𝑛 participants and

any 𝑡 of them can collaborate to retrieve the secret. The secret sharing protocol consists of

following phases:

1) Initialization: In this phase, the dealer who wants to distribute the secret 𝐾 chooses

different 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛 that correspond to each participant. The 𝑥𝑖′s are then published.

2) Secret Sharing: The secret 𝐾 is distributed as shares to the participants securely in this

phase. The dealer chooses 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑡 − 1 and constructs a polynomial 𝑞(𝑥) of degree 𝑡 −

1 such that the constant term 𝑞(0) represents the secret.

𝑞(𝑥) = 𝐾 + ∑ 𝑎𝑖𝑥
𝑖

𝑡−1

𝑖=1

The shares that correspond to each participant are constructed by evaluating the polynomial

at corresponding 𝑥𝑖 values.

𝑦𝑖 = 𝑞(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑛

The shares 𝑦𝑖 are then distributed to participants securely.

3) Secret Reconstruction: When 𝑡 or more participants collaborate together, they can retrieve

the secret 𝐾 by combining the shares. Let 𝑦𝑖 = 𝑞(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑡. Then by using Lagrange

Interpolation, the polynomial of degree 𝑡 − 1 can be reconstructed from these 𝑡 points using

the formula

𝑞(𝑥) = ∑ 𝑦𝑖 ∏
𝑥𝑗 − 𝑥

𝑥𝑗 − 𝑥𝑖

𝑡

𝑗=1,𝑗≠𝑖

𝑡

𝑖=1

There is exactly one such polynomial of degree ≤ 𝑡 − 1. The participants can obtain the

secret 𝐾 as

𝐾 = 𝑞(0) = ∑ 𝑦𝑖 ∏
𝑥𝑗

𝑥𝑗 − 𝑥𝑖

𝑡

𝑗=1,𝑗≠𝑖

𝑡

𝑖=1

It is noted that less than 𝑡 share holders get no information about the secret.

8

3.5.1 Secret Sharing Homomorphism

Secret sharing homomorphism (4) was introduced by Benaloh in 1987. It is noted that

Shamir’s scheme is additive homomorphic. He stated that any 𝑡 of the 𝑛 agents can determine

the super secret and no conspiracy of fewer than 𝑡 agents can gain any information at all

about any of the sub secrets.

Shamir’s secret sharing scheme has the (+, +) homomorphism property. For example,

assume there are two secrets: 𝐾1, 𝐾2 and are shared using polynomials 𝑔(𝑋) and 𝑓(𝑋). If we

add the shares ℎ(𝑖) = 𝑔(𝑖) + 𝑓(𝑖), 1 ≤ 𝑖 ≤ 𝑛, then each of these ℎ(𝑖) can be treated as the

share corresponding to the secret 𝐾1 + 𝐾2 . The polynomial ℎ(𝑋) = 𝑔(𝑋) + 𝑓(𝑋) gives us

ℎ(0) = 𝐾1 + 𝐾2.

Two operations are defined. One on the shares ⊕, and the other operation ⊗ on the

encrypted shares such that for all participants

𝐸𝑖(𝑠𝑖) ⊗ 𝐸𝑖(𝑠𝑖
′) = 𝐸𝑖(𝑠𝑖 ⊕ 𝑠𝑖

′)

If the underlying secret sharing scheme is homomorphic then by decrypting the combined

encrypted shares, the recovered secret will be equal to 𝑠𝑖 ⊕ 𝑠𝑖
′.

3.6 Homomorphic encryption

Schemes presented in chapter 4 use homomorphic encryption, so some attention is given to

encryption schemes that have this property.

We say that an encryption scheme Enc() is homomorphic (3) if the following equality holds:

𝐸𝑛𝑐𝑘(𝑚1) ∙ 𝐸𝑛𝑐𝑘(𝑚2) = 𝐸𝑛𝑐𝑘(𝑚1 + 𝑚2)

If we interpret 𝑚1 and 𝑚2 as numbers, then homomorphic encryption allows for computing

the ciphertext of 𝑚1 + 𝑚2 from the ciphertexts of 𝑚1 and 𝑚2 (but without knowledge of 𝑚1

and 𝑚2 themselves).

This property is commonly used in e-voting, since it allows us to work and calculate sum of

encrypted votes without knowing what the plaintext of encrypted vote is.

9

3.6.1 ElGamal Encryption Scheme

The ElGamal encryption scheme (5) is a public-key encryption algorithm based on the

Diffie–Hellman key exchange. The ElGamal encryption scheme can be defined over any

cyclic group 𝐺. Its security depends upon the difficulty of a certain problem in 𝐺 related to

computing discrete logarithms. The ElGamal encryption scheme consists of three

components: the key generation, the encryption algorithm, and the decryption algorithm.

Key Generation: The key generator works as follows:

 Alice generates an efficient description of a cyclic group 𝐺, of order 𝑞, with generator 𝑔.

Alice chooses a random 𝑥 ∈ {1, … , 𝑞 − 1}

Alice computes

𝑦 = 𝑔𝑥

Alice publishes 𝑦 along with the description of 𝐺, 𝑞 𝑔, as her public key. Alice retains 𝑥, as

her private key which must be kept secret.

Encryption: The encryption algorithm works as follows:

To encrypt a message 𝑚, to Alice under her public key (𝐺, 𝑞, 𝑔, 𝑦), Bob chooses a random

𝑟 ∈ {1, … , 𝑞 − 1}, then computes

𝑐1 = 𝑔𝑟

Bob computes the shared secret

𝑠 = 𝑦𝑟

Bob converts his secret message 𝑚, into an element 𝑚′ ∈ 𝐺. Bob computes

𝑐2 = 𝑚′ ∙ 𝑠

Bob sends the ciphertext (𝑐1, 𝑐2) = (𝑔𝑟 , 𝑚′ ∙ 𝑦𝑟) to Alice. Note that one can easily find 𝑦𝑟, if

one knows 𝑚′. Therefore, a new 𝑟, is generated for every message to improve security. For

this reason, 𝑟, is also called an ephemeral key.

Decryption: The decryption algorithm works as follows:

To decrypt a ciphertext (𝑐1, 𝑐2), with her private key 𝑥, Alice computes the shared secret

𝑡 = 𝑐1
𝑥

and then computes

𝑚′ = 𝑐2 ∙ 𝑡−1

10

which she then converts back into the plaintext message 𝑚, where 𝑡−1 is the inverse of 𝑡 in

the group 𝐺 (e.g., modular multiplicative inverse if 𝐺 is a subgroup of a multiplicative group

of integers modulo 𝑛).

The decryption algorithm produces the intended message, since

𝑐2 ∙ 𝑡−1 = (𝑚′ ∙ 𝑠) ∙ 𝑐1
−𝑥 = 𝑚′ ∙ 𝑦𝑟 ∙ 𝑔−𝑥𝑟 = 𝑚′ ∙ 𝑔𝑥𝑟 ∙ 𝑔−𝑥𝑟 = 𝑚′

Homomorphic Property: ElGamal encryption scheme has a homomorphic property.

Given two encryptions

(𝑐11, 𝑐12) = (𝑔𝑟1 , 𝑚1𝑦𝑟1), (𝑐21, 𝑐22) = (𝑔𝑟2 , 𝑚2𝑦𝑟2),

where (𝑟1, 𝑟2) are randomly chosen from {1,2, … , 𝑞 − 1} and 𝑚1, 𝑚2 ∈ 𝐺, one can compute

(𝑐11, 𝑐12)(𝑐21, 𝑐22) = (𝑐11𝑐21, 𝑐12𝑐22) = (𝑔𝑟1𝑔𝑟2 , (𝑚1𝑦𝑟1)(𝑚2𝑦𝑟2))
= (𝑔𝑟1+𝑟2 , (𝑚1𝑚2)𝑦𝑟1+𝑟2)

The resulted ciphertext is an encryption of 𝑚1𝑚2.

ElGamal Security: The security of the ElGamal scheme depends on the properties of the

underlying group 𝐺. If the computational Diffie–Hellman assumption (CDH) holds in the

underlying cyclic group 𝐺, then the ElGamal encryption function is one way. The CDH is the

assumption that a certain computational problem within a cyclic group 𝐺 is hard. Consider a

cyclic group 𝐺 of order 𝑞, the CDH assumption states that, given (𝑔, 𝑔𝑎, 𝑔𝑏) for a randomly

chosen generator 𝑔 and random 𝑎, 𝑏 ∈ {0 … , 𝑞 − 1} , it is computationally intractable to

compute the value 𝑔𝑎𝑏. If the decisional Diffie–Hellman assumption (DDH) holds in 𝐺, then

ElGamal achieves semantic security.

Other schemes related to ElGamal which achieve security against chosen ciphertext attacks

have also been proposed. The ElGamal encryption scheme is usually used in a hybrid

cryptosystem, i.e., the message itself is encrypted using a symmetric cryptosystem and

ElGamal is then used to encrypt the key used for the symmetric cryptosystem. This is because

asymmetric cryptosystems like ElGamal are usually slower than symmetric ones for the same

level of security, so it is faster to encrypt the symmetric key (which most of the time is quite

small if compared to the size of the message) with ElGamal and the message (which can be

arbitrarily large) with a symmetric cryptosystem.

11

3.6.2 Paillier Encryption Scheme

The Paillier encryption scheme (5), named after and invented by Pascal Paillier in 1999, is a

probabilistic public-key algorithm.

The Paillier encryption scheme is composed of key generation, encryption, and decryption

algorithms as follows:

Key Generation: Choose two large prime numbers 𝑝 and 𝑞 randomly and independently of

each other, such that

gcd(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1

This property is assured if both primes are of equal length.

Compute

𝑛 = 𝑝𝑞, 𝜆 = lcm(𝑝 − 1, 𝑞 − 1)

where lcm stands for the least common multiple.

Select random integer 𝑔 where 𝑔 ∈ 𝑍𝑛2
∗ .

Ensure 𝑛 divides the order of 𝑔 by checking the existence of the following modular

multiplicative inverse:

µ = (𝐿(𝑔𝜆 mod 𝑛2))
−1

mod 𝑛

where function 𝐿 is defined as

𝐿(𝑢) =
𝑢 − 1

𝑛

Finally, the public (encryption) key is (𝑛, 𝑔) and the private (decryption) key is (𝜆, µ).

If using 𝑝, 𝑞 of equivalent length, a simpler variant of the above key generation steps would

be to set

𝑔 = 𝑛 + 1, 𝜆 = 𝜑(𝑛), µ = 𝜑(𝑛)−1 mod 𝑛

where 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1).

Encryption: Let 𝑚 be a message to be encrypted where 𝑚 ∈ 𝑍𝑛. Select random 𝑟 where 𝑟 ∈
𝑍𝑛

∗ . Compute ciphertext as

𝑐 = 𝑔𝑚𝑟𝑛 mod 𝑛2

Decryption: Let 𝑐 be the ciphertext to decrypt, where 𝑐 ∈ 𝑍𝑛2
∗

12

Compute the plaintext message as:

𝑚 = 𝐿(𝑐𝜆 mod 𝑛2) ∙ 𝜇 mod 𝑛

Homomorphic Properties: A notable feature of the Paillier scheme is its homomorphic

properties. Given two ciphertexts 𝐸(𝑚1, 𝑝𝑘) = 𝑔𝑚1𝑟1
𝑛 mod 𝑛2 and 𝐸(𝑚2, 𝑝𝑘) =

𝑔𝑚2𝑟2
𝑛 mod 𝑛2, where 𝑟1and 𝑟2 are randomly chosen from Z, we have:

1) Homomorphic Addition of Plaintexts

The product of two ciphertexts will decrypt to the sum of their corresponding plaintexts, i.e.,

𝐷(𝐸(𝑚1, 𝑝𝑘) ∙ 𝐸(𝑚2, 𝑝𝑘) mod 𝑛2) = 𝑚1 + 𝑚2 mod 𝑛

because

𝐸(𝑚1, 𝑝𝑘) ∙ 𝐸(𝑚2, 𝑝𝑘) = (𝑔𝑚1𝑟1
𝑛)(𝑔𝑚2𝑟2

𝑛) mod 𝑛2 = 𝑔𝑚1+𝑚2(𝑟1𝑟2)𝑛 mod 𝑛2 = 𝐸(-
𝑚1 + 𝑚2, 𝑝𝑘)

The product of a ciphertext with a plaintext raising 𝑔 will decrypt to the sum of the

corresponding plaintexts, i.e.,

𝐷(𝐸(𝑚1, 𝑝𝑘) ∙ 𝑔𝑚2 mod 𝑛2) = 𝑚1 + 𝑚2 mod 𝑛

because

𝐸(𝑚1, 𝑝𝑘) ∙ 𝑔𝑚2 = (𝑔𝑚1𝑟1
𝑛)𝑚2 mod 𝑛2 = 𝑔𝑚1+𝑚2𝑟1

𝑛𝑚2 mod 𝑛2 = 𝐸(𝑚1 + 𝑚2, 𝑝𝑘)

2) Homomorphic Multiplication of Plaintexts

An encrypted plaintext raised to the power of another plaintext will decrypt to the product of

the two plaintexts, i.e.,

𝐷(𝐸(𝑚1, 𝑝𝑘)𝑚2 mod 𝑛2) = 𝑚1𝑚2 mod 𝑛

Because

𝐸(𝑚1,, 𝑝𝑘)
𝑚2

= (𝑔𝑚1𝑟1
𝑛)𝑚2mod 𝑛2 = 𝑔𝑚1𝑚2(𝑟1

𝑚2)
𝑛

mod 𝑛2 = 𝐸(𝑚1𝑚2, 𝑝𝑘)

More generally, an encrypted plaintext raised to a constant 𝑘 will decrypt to the product of

the plaintext and the constant, i.e.,

𝐷(𝐸(𝑚1, 𝑝𝑘)𝑘mod 𝑛2) = 𝑘𝑚1 mod 𝑛

However, given the Paillier encryptions of two messages, there is no known way to compute

an encryption of the product of these messages without knowing the private key.

13

Paillier Security: The Paillier encryption scheme provides semantic security against chosen-

plaintext attacks. The semantic security of the Paillier encryption scheme was proved under

the decisional composite residuosity (DCR) assumption—the DCR problem is intractable.

The DCR problem states as follows: Given a composite 𝑁 and an integer z, it is hard to

decide whether z is a 𝑁-residue modulo 𝑁2 or not, i.e., whether there exists 𝑦 such that 𝑧 =
𝑦𝑛(𝑚𝑜𝑑 𝑛2).

Paillier and Pointcheval however went on to propose an improved cryptosystem that

incorporates the combined hashing of message 𝑚 with random 𝑟. The hashing prevents an

attacker, given only 𝑐, from being able to change 𝑚 in a meaningful way.

3.6.2.1 Application to E-Voting

Consider a simple voting scheme in which an item up for debate can either be supported or

opposed. Each voter casts his/her vote using the Paillier Cryptosystem, such that a vote in

favour of the proposed item is the plaintext message 1, and a vote against the item is the

message 0. Each voter chooses a random 𝑟 to encrypt his/her vote with, but they all use the

same officially designated public key (𝑛, 𝑔). A tally, 𝑥, is kept of how many votes are cast,

then all the encrypted votes are multiplied together, and the result is decrypted as some value,

𝑦. Since multiplying encrypted text results in the addition of plaintexts, this process will

result in the addition of 1’s and 0’s as 𝑦, effectively tallying all of the votes for the

proposition. Since the number of votes cast, 𝑥, is known, this leaves 𝑥– 𝑦 votes against the

proposition, and the vote can be properly decided.

4 Schemes Based on Homomorphic Encryption

The main idea of this approach is that ballot is viewed as a number. The ballot is shared and

encrypted (using either secret sharing or threshold cryptosystem) between 𝑀 authorities.

Cooperation of at least 𝑡 out of 𝑀 authorities is needed to reconstruct and decrypt the ballot.

Now, using homomorphism properties, ballots are summed up and then the sum is decrypted

and reconstructed. We will see how it is implemented in different schemes.

4.1 Cramer-Gennaro-Schoenmakers scheme

Here is described election scheme proposed by Ronald Cramer, Rosario Gennaro, and Berry

Schoenmakers (6).

 The scheme consists of 𝑀 authorities 𝐴1, … , 𝐴𝑀 and a bulletin board. According to

threshold cryptosystem, authorities share a common El Gamal public key, 𝐵 = (𝑝, 𝑔, 𝛾),

where 𝛾 = 𝑔𝑎. Each authority owns his secret share 𝑠𝑖 of private key 𝑎 according to

Shamir threshold secret sharing scheme. Threshold trust with threshold 𝑡 on authorities is

used. Also, each voter has his own public key pair.

14

In this description of scheme voter 𝑉 can select between two different options, so that the

ballot 𝑣 can be one of numbers 𝑣 ∈ {1, −1} . We get the result of elections by

summing these numbers. If the sum is positive, then one option was selected more than

the other, if it is negative — vice versa. If it is zero, both options have been

selected the same number of times. As 𝑁 is known, it is possible to compute exactly how

many times each option was selected.

Firstly, voter computes 𝑔𝑣 and encrypts it (𝑦1, 𝑦2) = (𝑔𝑟, 𝛾𝑟𝑔𝑣). Then he constructs

zero-knowledge proof of knowledge that shows that ballot was co ns t r u c t ed

co r r ec t l y . I t i s en ou gh t o p ro v e , t h a t a t l e as t o n e o f equ a t io ns holds:

1) log𝑔 𝑦1 = log𝛾
𝑦2

𝑔1⁄ 2) log𝑔 𝑦1 = log𝛾
𝑦2

𝑔−1⁄

After that, encrypted ballot (𝑦1, 𝑦2) and non-interactive proof of correctness are sent to the

bulletin board. The message sent is signed using voter’s private key.

After the elections are over, submitted ballots are verified by authorities. In -

correct ballots are removed. Signatures of ballots are verified to ensure, that

only eligible actors can vote. In order to ensure uniqueness, at most one ballot

of each voter must be counted. Now homomorphism property of ElGamal encryption is

used on encrypted ballots

(𝑔𝑟1 , 𝛾𝑟1𝑔𝑣1)
 …

(𝑔𝑟𝑁 , 𝛾𝑟𝑁𝑔𝑣𝑁)

in order to get

(𝑔∑ 𝑟𝑖 , 𝛾∑ 𝑟𝑖𝑔𝑆)

where 𝑆 = ∑ 𝑣𝑖 is the result of elections. Thereafter, 𝑔𝑆 is decrypted according to the

threshold cryptosystem by any 𝑡 authorities.

Finally, it is needed to extract 𝑆 from 𝑔𝑆 . Generally, computing discrete logarithm is

considered infeasible, but in our case 𝑆 ∈ [−𝑁 … 𝑁]. So, it is enough to (pre)compute

𝑔−𝑁 , 𝑔−𝑁+1, … , 𝑔1, 𝑔0, 𝑔1, … , 𝑔𝑁−1, 𝑔𝑁 and compare these values with 𝑔𝑆.

This scheme satisfies eligibility, uniqueness, robustness and availability. Correctness and

verifiability are also satisfied because both voters and authorities must prove correctness of

their actions (authorities prove correctness of their actions implicitly when performing

verifiabled encryption in the setting of threshold cryptosystem). Privacy is ensured as long as

at most 𝑡 − 1 authorities misbehave according to the threshold trust on them. Incoercibility is

not satisfied, because voter can decrypt his ballot and present certificate for encryption

(randomness used) to the coercer.

15

4.2 Schoenmakers scheme

In this scheme (7), the voter shares his vote among the authorities using secret sharing

scheme. Computing the final tally exploits the homomorphic property of the secret sharing

(the tally – sum of the secrets is reconstructed from the multiplied shares).

Initialization stage. Initialization of the publicly verifiable secret sharing scheme is

performed (generators 𝑔, 𝐺 of 𝑍𝑝, public keys ℎ𝑗 = 𝑔𝑧𝑗 of the authorities are published).

Voting stage. Voter 𝑉𝑖 chooses his vote 𝑣𝑖 ∈ {0,1} and a random 𝑠𝑖 ∈ 𝑍𝑝. He uses Sharim’s

secret sharing to share a secret 𝑔𝑠𝑖 and publishes the value 𝑈𝑖 = 𝑔𝑠𝑖+𝑣𝑖. In addition, to show

that indeed 𝑣𝑖 ∈ {0,1} he gives a proof that

log𝐺 𝐶0 = log𝑔 𝑈𝑖 ∨ log𝐺(𝐺𝐶0) = log𝑔 𝑈𝑖

(𝐶0 = 𝐺𝑠𝑖 is published as a part of the secret sharing). Anyone can check the ballot in the

bulletin board due to the public verifiability of the secret sharing scheme and the given proof

of 𝑣𝑖 ∈ {0,1}.

Counting stage. Suppose that the voter 𝑉𝑖, 𝑖 = 1, … , 𝑚 succeeds in casting valid ballots.

Firstly, all the respective encrypted shares 𝐻𝑖𝑗 = ℎ𝑗
𝑝𝑖(𝑗)

, 𝑗 = 1, … , 𝑡 − 1 are accumulated

𝐻𝑗
∗ = ∏ 𝐻𝑖𝑗 = ∏ ℎ𝑗

𝑝𝑖(𝑗)
= ℎ𝑗

∑ 𝑝𝑖(𝑗)𝑖

𝑖𝑖

Now authorities can obtain 𝑔
∑ 𝑝𝑖(0)𝑖 = 𝑔

∑ 𝑠𝑖𝑖 , due to the homomorphic property. Combining

with ∏ 𝑈𝑖𝑖 = 𝑔
∑ 𝑠𝑖+𝑣𝑖𝑖 we gain 𝑔

∑ 𝑣𝑖𝑖 = 𝑔𝑇 . The final tally 𝑇 can be now computed as in the

CGS scheme (see section 4.1).

This scheme satisfies the following: Only eligible voters can write into the bulletin board.

The voter cannot cast invalid or double vote, since he is required to give a proof of the

validity of the vote. Privacy is protected by the security of the publicly verifiable secret

sharing scheme. Anyone can verify the validity of the voter’s vote. The publicly verifiable

secret sharing scheme prevents the voter from distributing invalid shares to the authorities.

Anyone can multiply the encrypted shares of the 𝑗th authority, and anyone can verify whether

the 𝑗th authority had decrypted its sum of the shares correctly. Anyone can compute the final

tally from the published sums of the shares. The scheme is not receipt-free, since the voter’s

receipt is the secret 𝑠𝑖.

16

4.3 Hamill and Snyder Scheme

A hybrid scheme was proposed by Hamill and Snyder (7). The possibility of coercing in the

CGS scheme (section 4.1) is caused by the randomness 𝑘 used in the encryption of the vote.

The problem is that when the voter himself encrypts his vote, he knows what and how is

encrypted, and he can be coerced to reveal it. In the HS scheme, possible votes are encrypted

and permuted by the authorities, one after another. A permutation of the encrypted votes is

sent through the untappable channel to the voter. Voter just points at the vote he chooses. The

scheme is designed in such a way that only the voter gets to know the final permutation and

he can lie about it to anyone else.

Votes will be encrypted as in the CGS scheme (section 4.1), using El Gamal encryption.

Recall that 𝑖th choice encrypts to the (𝑥, 𝑦) = (𝑔𝑘 mod 𝑝, ℎ𝑘𝐺𝑖 mod 𝑝), where (𝑝, 𝑔, ℎ) is

the public El Gamal key and 𝑘 is a random number.

Initialization stage. 𝑁 authorities set up robust threshold El Gamal cryptosystem. The

generators 𝐺1, … , 𝐺𝐿 representing the possible choices are published. Authorities also create a

public list of all standard-encrypted valid votes 𝑒1
(0)

, … , 𝑒𝐿
(0)

, where 𝑒𝑖
(0)

 is the encryption of

the 𝑖th choice 𝐺𝑖 using the randomness 𝑘 = 0: 𝑒𝑖
(0)

= (1, 𝐺𝑖).

Voting stage. For each voter 𝑉 , the authorities generate a list of the encryptions of all

possible votes, from which the voter 𝑉 selects the one representing his intention. In turn, for

each authority 𝐴𝑗 (where 𝑗 = 1, 2, . . . , 𝑁): the 𝐴𝑗 takes on input the list 𝑒1
(𝑗−1)

, … , 𝑒𝐿
(𝑗−1)

 , re-

encrypts each element from the input list, and permutes the list in a random order. This way,

𝐴𝑗 produces the output list 𝑒1
(𝑗)

, … , 𝑒𝐿
(𝑗)

. Moreover, 𝐴𝑗 is required to prove that the output list

has been properly constructed. If the 𝐴𝑗 fails in some way or the voter objects to 𝐴𝑗, then the

𝐴𝑗 is ignored and it is put 𝑒
(𝑗) = 𝑒

(𝑗−1). The first authority picks the standard list 𝑒1
(0)

, … , 𝑒𝐿
(0)

as the input.

Below is the more detailed description of the protocol:

1. 𝐴𝑗 computes the output list 𝑒1
(𝑗)

, … , 𝑒𝐿
(𝑗)

 as follows:

(a) 𝐴𝑗 selects random permutation 𝜋𝑗 ∶ {1 . . . 𝐿} → {1 . . . 𝐿} and the random numbers

𝑘1, … , 𝑘𝐿 ∈𝑅 𝑍𝑝

(b) The 𝜋𝑗(𝑖)th item in the final list is obtained by re-encrypting the 𝑖th item 𝑒𝑖
(𝑗−1)

 from the

input list with the randomness 𝑘𝑖.

2. Without revealing the permutation 𝜋𝑗 as well as the randomness 𝑘1, … , 𝑘𝐿, the 𝐴𝑗 shows

that the output list 𝑒1
(𝑗)

, … , 𝑒𝐿
(𝑗)

 is correctly constructed: For each 𝑖 = 1 . . . 𝐿 the 𝐴𝑗 proves

17

that there exists a re-encryption of the 𝑖 th item 𝑒𝑖
(𝑗−1)

 of the input list in the output list

𝑒1
(𝑗)

, … , 𝑒𝐿
(𝑗)

.

3. 𝐴𝑗 secretly transfers the permutation 𝜋𝑗 together with the private proof of its correctness

through the untappable channel to the voter 𝑉 . More precisely, 𝐴𝑗 proves that for each 𝑖,

𝑒𝜋𝑗(𝑖)
(𝑗)

 is the re-encryption of 𝑒𝑖
(𝑗−1)

.

4. If the voter does not accept the proof, he publicly complains about the authority. After that,

the list is rolled back to the previous state 𝑒1
(𝑗−1)

, … , 𝑒𝐿
(𝑗−1)

 and the 𝑗th authority is ignored.

 The voter publicly announces the position 𝑖 of his desired vote in the final list 𝑒
(𝑁).

Counting stage. Each voter has already chosen his vote from the final list produced for him

by the authorities. His vote is encrypted, and then the result of the election can be computed

as following – the encrypted votes are multiplied to obtain the encrypted sum of the votes, the

authorities jointly decrypt the sum of the votes and publish the proof of correct decryption.

Achieved Properties

If the El-Gamal cryptosystem is secure, then this scheme provides eligibility, universal

verifiability, computational privacy, robustness and receipt freeness.

Eligibility. Eligibility is achieved, as the voter cannot cast invalid vote, he votes at most once

and he votes how he wishes (he can trace the permutation of the encrypted votes). Only one

problem arises, when one of the authorities coerces. It can force the voter not to complain

against its wrong proof of the permutation. Therefore, the voter will lose his track and he will

vote randomly. For the coercer, random vote can be better than the almost sure vote for his

enemy.

Privacy, robustness. The encrypted vote cannot be decrypted by an outsider or by a group

consisting of at most 𝑡 authorities. Given a list of encrypted votes and a shuffled list, it is

infeasible to find out the correct permutation.

Universal Verifiability. Any observer can check whether the authority 𝐴𝑗 shuffled the list

correctly. This way, any observer can verify whether the last list 𝑒
(𝑁) is the list of the

encryptions of all possible votes. Any observer can compute a product of all encrypted votes

selected by the voters, and any observer can verify whether the final tally has been correctly

decrypted by the authorities.

Receipt-freeness. Assume that the coercer or vote-buyer does not collude with the authorities.

Voter can interact only at two points: he can revert shuffling of at most 𝑁 − 𝑡 − 1 authorities,

and he points at the encrypted vote of his choice. From each authority he receives

18

permutation together with the proof of its correctness. Untappable channel guarantees that no

one is able to intercept this message. Thus, the voter can substitute received data with his own

permutation, and due to the no transferability of the designated-verifier proof, he can

construct a proof of its correctness as well. This way he can deceive the possible coercer. If

the coercer colludes with some of the authorities (at most with 𝑡 of them), he will know the

permutations they made. Therefore, the voter cannot lie about their permutations. If he knows

the colluding authorities, he will lie about the permutation of reliable authority. Otherwise he

selects one authority randomly and lies for its permutation. Apparently, receipt-freeness holds

as long as the voter knows at least one authority not colluding with the coercer. Coercer can

only force the voter to vote randomly.

4.4 Scheme based on Secret Sharing Homomorphism

The proposed system (4) is a modification of the existing electronic voting scheme’s used in

India. Here is proposed solution that uses Internet and secret sharing homomorphism.

In the current Electronic Voting System, when a vote is casted, the corresponding candidates

data base entry is updated and it can be easily tracked. But in the proposed scheme, it is

difficult to track the vote because the shares of the votes are added to all the servers.

Let us assume that there are 𝑚 candidates 𝐶1, … , 𝐶𝑚 and 𝑛 voters 𝑉1, … , 𝑉𝑛 .Then the binary

encoding of the vote corresponding to each candidate will consist of (⌊log2 𝑛⌋ + 1) × 𝑚

number of bits. Here we consider the fact that all voters may vote to the same candidate. So

the number of bits required for the representation of votes for each candidate is equal to the

number of bits required to represent the total number of voters which is (⌊log2 𝑛⌋ + 1) × 𝑚.

The encoding of the vote corresponding to each contesting candidate is explained below with

an example. Let us consider that there are three candidates and seven voters. So the total

number of bits of each encoded vote will be nine. The bit pattern corresponding to the vote of

each candidate is obtained by setting the corresponding bit 𝐶𝑖 to 1 in the code 00𝐶300𝐶200𝐶1

and other bits 𝐶𝑖 to 0. For example the code that corresponds to the vote of candidate 𝐶3 is

001000000(64). So depending on the vote casted, it is encoded into a decimal code of 1,8 or

64 respectively.

The encoded vote is then shared using Shamir’s threshold secret sharing scheme. The shares

are then sent to different Collection Centres (𝐶𝐶). The Collection Centres are responsible for

receiving and summing up the shares corresponding to each vote casted. If there are 𝑝

collection centres 𝐶𝐶1, … , 𝐶𝐶𝑝 and a threshold 𝑡 < 𝑝 is set so that we can get back the result

from any 𝑡 collection centres. This provides trust and reliability. Based on the number of

collection centres and threshold set up, Shamir’s scheme can be used for a threshold (𝑡, 𝑝)

secret sharing. A 𝑡 − 1 degree polynomial 𝑞(𝑥) is constructed with constant term

representing the encoded vote value in decimal. The other coefficients are chosen randomly

from the field 𝑍𝑝 , where 𝑝 is larger than the encoded vote values and the number of

19

participants. The shares are generated by evaluating the polynomial 𝑞(𝑥) at 𝑝 different values

𝑥1, … , 𝑥𝑝. These 𝑥1, … , 𝑥𝑝 values represent different collection centres. These shares are then

sent securely to the 𝑝 collection centres. Any 𝑡 of them can be used for result evaluation and

verification. The shares look totally random and the collection centres have no idea regarding

which secret (vote) share it is, from the share value. The collection centres are responsible for

summing up the shares they receive for vote tallying. Collection centres behave as group of

authorized parties.

 The Result Computation module is responsible for computing and declaring the final result.

From the sum of shares stored on collection centres, the result can be obtained using

Lagrange Interpolation. If there are p collection centres and a (𝑡, 𝑝) threshold secret sharing

scheme is used, then any t of the share sum from the collection centres can be used for

computing the final result. These 𝑡 shares can be used to get back a 𝑡 − 1 degree polynomial

𝑄(𝑥) and the encoded result will be 𝑄(0). The result is then decoded by converting 𝑄(0) into

binary and then separating the bits corresponding to each candidate. The decimal equivalent

of the separated bits represents the total vote obtained by each candidate. Based on this the

result can be announced.

Algorithm 1: E-Voting

Input: Vote casted by the voters

Output: Sum of the shares of the votes

Let m denote the number of candidates and n denote number of voters.

Set V = (⌊log2 𝑛⌋ + 1) × 𝑚 bits for encoding the votes.

Choose an appropriate field 𝑍𝑝.

for each vote 𝑖 = 1 ∶ 𝑛 do

𝑒𝑛𝑐_𝑣𝑜𝑡𝑒 = 𝑏𝑖𝑛_𝑑𝑒𝑐𝑖𝑚𝑎𝑙 (𝑠𝑒𝑡_𝑏𝑖𝑡 (𝑉))

V is set according to the vote casted, 𝑒𝑛𝑐_𝑣𝑜𝑡𝑒 is the encoded vote in decimal

Pick 𝑡 − 1 random numbers 𝑎1, … . , 𝑎𝑡−1 from 𝑍𝑝

Construct the polynomial

𝑞(𝑥) = 𝑎1𝑥 + ⋯ + 𝑎𝑡−1𝑥𝑡−1 + encvote

for 𝑗 = 1 ∶ 𝑝 do

Generate share 𝑉𝑖𝑗 = 𝑞(𝑗) , where 𝑉𝑖𝑗 is the 𝑗th share of 𝑖th vote

Send the share 𝑉𝑖𝑗 to 𝐶𝑗
𝑡ℎ collection centre through a secure communication channel

end

for each Collection Centre 𝑗 = 1 ∶ 𝑝 do

Sum of shares 𝑆𝐶𝐶𝑗 = 𝑆𝐶𝐶𝑗 + 𝑉𝑖𝑗

end

end

20

Algorithm 2: Result Computation

Input: Share sum of the votes from collection centre

Output: Votes obtained by each candidate

for each randomly chosen 𝑡 Collection Centre 𝑗 = 1 ∶ 𝑡 do

retrieve 𝑆𝐶𝐶𝑗

end

Interpolate using 𝑆𝐶𝐶𝑗 and corresponding 𝑥𝑖 values to obtain the polynomial 𝑄(𝑥)

Obtain the secret value 𝑄(0).

Decode 𝑄(0) and obtain the binary representation.

Each (⌊log2 𝑛⌋ + 1) bits will represent each candidates vote.

Publish the final results.

5 Security

Despite the extensive research going on in the field of electronic and remote voting there are

still a few open problems to consider.

 Security threats may be the result of system failure, intimidation, vote buying and selling,

and hacker and computer viral tampering. Threats must be identified, and reasonably dealt

with to ensure the fairness, freedom, and openness of an election.

The secure platform problem describes the dilemma that the voter should be able to vote using

a home computer or other device owned by the voter but realistically cannot, because it is

easy to compromise said devices. Most voting protocols assume some sort of trusted device to

perform the voting on, but a lot of voter-owned devices are either already infected with

malicious software or could easily be infected, if someone wants to manipulate an election.

Malicious software could change the voters choice, not send the vote, pretend to have voted

correctly but misbehave, record the choice and lift the anonymity of the voter with the

recorded ballot. The list of possibilities is limitless. Furthermore the platform the election

logic is running on (e.g. tallying-servers, bulletin boards, etc.) could be compromised as well.

Typically voting schemes and systems are analyzed regarding theoretical threats that could be

possible because of weak cryptography or flaws in the protocol design. But in real-world

systems there is also the component of the implementation. A real-world election system is a

piece of software running on servers connected to the Internet. As such they are potentially

vulnerable to network-based attacks like DDoS, Man-in-the-Middle, packet sniffing,

compromised key attacks, etc. Another point of concern are the software-components used to

implement the voting protocols. They could contain back-doors or use vulnerable libraries

thus potentially opening the whole system-network to attackers.

21

Another source of threats is fraud-related. Fraud-related threats may be attributed to

intimidation, and vote buying and selling. These threats are not unique to electronic election

systems. However, in a traditional voting system, intimidation, and vote buying and selling,

although happen, may not be effective as it is almost impossible for a voter to prove that

he/she has voted in favour of a candidate set by the deal. Electronic election systems allow

voters to cast their votes from their own chosen places. It is possible for voters to show their

choices of candidates. Worse yet, the buyers may purchase a large of voting rights from voters

and cast their votes on their behalf. This can never happen in a traditional system if properly

administrated.

To the general public, IT is a new concept. In general, the public normally will reject a new

concept if they do not have any prior experience with it. They do not understand the

technology and hence, naturally remain sceptical. To earn the public confidence, the process

using an electronic election system must be as transparent as possible and must be subject to

the public examination. Of course, such an open approach would theoretically give more clues

and hints to hackers.

In voting it is assumed that the voters will exercise their rights ethically and legally. This

assumption is not realistic, since some corrupted voters may be willing to sell their voting

rights to a buyer and let the buyer vote on their behalf. To ensure the identity of a voter, other

means, such as fingerprint and retinal scan, may be used. These methods are technically

feasible, but are expensive to implement.

If actual security threats are not properly addressed in an electronic election system, security

threats perceived by the public will be high and the election will not be viewed as being fair,

free, and open.

22

6 Conclusion

In this project I presented some of the underlying cryptography behind e-voting. Special

attention was given to homomorphic encryption, its property of decrypting sum of encrypted

votes without knowing plaintext of each of them, and its use in various schemes.

E-voting was tested and applied in many countries. As it offers many advantages regarding

development, technology, speed and security, it is time to expand its use and change people’s

perspective regarding this new, modern approach to voting.

23

Bibliography

1. Secure E-Voting With Blind Signature. S. Ibrahim, M. Kamat, M. Salleh, S. R. A.l Aziz. 2003.

2. Efficient Zero-Knowledge Argument for Correctness of a Shuffle. S. Bayer, J. Groth. 2012.

https://link.springer.com/content/pdf/10.1007%2F978-3-642-29011-4_17.pdf.

3. Introduction to Electronic Voting. Zagorski, F. 2012.

https://zagorski.im.pwr.wroc.pl/courses/voting_2012/voting.pdf.

4. Secret Sharing Homomorphism and Secure E-voting. Binu V.P, Divya G Nair, Sreekumar A. 2016.

https://arxiv.org/pdf/1602.05372.pdf.

5. [book auth.] R. Paulet, E. Bertino Xun Yi. Homomorphic Encryption and Applications. 2014.

https://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwiP097TkP7YAh

VD_qQKHaDxCUoQFgguMAE&url=http%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocu

ment%2Fcda_downloaddocument%2F9783319122281-c1.pdf%3FSGWID%3D0-0-45-1487904-

p177033600&usg=.

6. Electronic Voting Schemes. Murk, O. 2000.

http://www.academia.edu/761518/Electronic_Voting_Schemes.

7. —. Rjaskova, Z. 2002. https://people.ksp.sk/~zuzka/elevote.pdf.

8. Survey on Remote Electronic Voting. A. Schneider, C. Meter, P. Hagemeister. 2017.

https://arxiv.org/pdf/1702.02798.pdf.

9. e-Voting - A survey and introduction. Rossler, T. 2004. https://www.a-

sit.at/pdfs/evoting_survey.pdf.

