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1. Introduction1. Introduction1. Introduction1. Introduction

Serpent is a block cipher developed in 1998 by Ross Anderson, Eli Biham, and Lars 
Knudsen for the NIST AES competition. It was one of the finalists but ended up in second 
place, receiving 59 votes while Rijndael received 86 [RA].

This paper describes the Serpent algorithm, shows examples of how it can be 
implemented, and discusses its security.

One place where Serpent is used is the widely known TrueCrypt disk encryption program 
and its derivatives (e.g. VeraCrypt). [VC]

2. High level structure2. High level structure2. High level structure2. High level structure

Serpent uses a substitution-permutation network to encrypt a 128-bit block with a key 
that is up to 256 bits long. The encryption is done in 32 rounds (regardless of key 
length) where each round consists of [SP]:

• a key mixing step, during which the round subkey is XOR-ed with the data,
• a substitution, during which bits of data are substituted with other bits as 

specified in the S-boxes,
• a linear transformation (described later), or, for the last round, an additional key 

mixing step.

The decryption is the reverse of encryption, with the linear transformation and S-boxes 
being replaced by their inverses.

There are two ways to implement Serpent: the "basic" way, which is perhaps easier to 
implement in hardware, but very inefficient in software, and the "bitslice" way, which is 
designed to be efficient on pipelined 32-bit processors [SP]. We will first describe the 
parts that are common to both, then describe each one's specifics. We will show code 
that implements both ways in Pascal (compilable with Turbo Pascal and Free Pascal).

We start with the following type definitions:

type

  ty128 = array [0 .. 3] of longint;     {128-bit vector.}

  pty128 = ^ty128;                       {Pointer to 128-bit vector.}

  ty256 = array [0 .. 7] of longint;     {256-bit vector.}

  tySubkeys = array [0 .. 32] of ty128;  {Subkeys.}

  tySBox = array [0 .. 15] of byte;      {One S-box or inverse S-box.}

  ptySBox = ^tySBox;                     {Pointer to an S-box or inverse S-box.}

  tySBoxes = array [0 .. 7] of tySBox;   {Eight S-boxes or inverse S-boxes.}

2.1. Key expansion2.1. Key expansion2.1. Key expansion2.1. Key expansion

The algorithm only works with 256-bit keys internally. Keys shorter than 256 bits are 
expanded to 256 bits by prefixing the key with a "1" bit, then prefixing that with "0" bits
so the key is 256 bits long. This way, every short key has a unique long key [SP]. For 
example:



• "0" becomes "0...010".
• "1" becomes "0...011".
• "00" becomes "0...0100".

In our implementation, we only support 256-bit keys.

2.2. Prekey and subkey generation2.2. Prekey and subkey generation2.2. Prekey and subkey generation2.2. Prekey and subkey generation

The prekey is an array of 132 32-bit words iteratively generated from the 256-bit key 
with the following assignment (i goes from 0 to 131). There are an additional 8 elements 
(numbered -8 to -1) which are simply the first 8 32-bit words of the 256-bit key. [SP]

Each subkey (round key) that will be XOR-ed with the data at the start of every 
encryption round then simply consists of 4 consecutive 32-bit words of the prekey, 
which are put through S-boxes beforehand [SP].

procedure PrepareSubkeys (var Key: ty256; var Subkeys: tySubkeys);

{Prepares the subkeys from the given key. Source: page 7 of [SP].}

var

  Prekey: array [-8 .. 131] of longint;

  i: integer;

procedure PrepareSubkey (WhichSubkey: integer; var Subkey: ty128)

  {$IfDef FPC} inline {$EndIf};

{Prepares a subkey (0 to 32; the last being used by the final encryption round

(or first decryption round) only). Source: page 7 of [SP].}

var

  i: integer;

begin

  for i := 0 to 3 do

    Subkey[i] := Prekey[WhichSubkey shl 2 + i];

  Substitute(Subkey, @kSBox[(3 - WhichSubkey) and 7]);

end;

begin

  {Prepare the prekey.}

  for i := -8 to -1 do

    Prekey[i] := Key[i + 8];

  for i := 0 to 131 do

    Prekey[i] := Rotate(



      Prekey[i - 8] xor

      Prekey[i - 5] xor

      Prekey[i - 3] xor

      Prekey[i - 1] xor

      $9E3779B9 xor

      i,

      11

    );

  {Prepare the subkeys.}

  for i := 0 to 32 do

    PrepareSubkey(i, Subkeys[i]);

end;

2.3. S-boxes2.3. S-boxes2.3. S-boxes2.3. S-boxes

Serpent uses 8 4-bit S-boxes. Each S-box has its own inverse S-box. [SP]

When processing a 128-block (a data block or a subkey), the words of the block are put 
through an S-box in a column-wise manner: if we arrange the words into a binary matrix 
of 4 rows and 32 columns, then each 4-bit column is substituted with a different column 
according to the S-box.

const

  kSBox: tySBoxes =

    {S-boxes; source: [SP], page 21}

    (

      (3, 8, 15, 1, 10, 6, 5, 11, 14, 13, 4, 2, 7, 0, 9, 12),

      (15, 12, 2, 7, 9, 0, 5, 10, 1, 11, 14, 8, 6, 13, 3, 4),

…
      (7, 2, 12, 5, 8, 4, 6, 11, 14, 9, 1, 15, 13, 3, 10, 0),

      (1, 13, 15, 0, 14, 8, 2, 11, 7, 4, 12, 10, 9, 3, 5, 6)

    );

  kInvSBox: tySBoxes =

    {Inverse S-boxes; source: [SP], page 21}

    (

      (13, 3, 11, 0, 10, 6, 5, 12, 1, 14, 4, 7, 15, 9, 8, 2),

      (5, 8, 2, 14, 15, 6, 12, 3, 11, 4, 7, 9, 1, 13, 10, 0),

…
      (15, 10, 1, 13, 5, 3, 6, 0, 4, 9, 14, 7, 2, 12, 8, 11),

      (3, 0, 6, 13, 9, 14, 15, 8, 5, 12, 11, 7, 10, 1, 4, 2)

    );

procedure Substitute (var Block: ty128; SBox: ptySBox);

{Applies an S-box or inverse S-box to a 128-bit vector column-wise; the most

significant word is the top row.}

var

  i: integer;

  j: integer;

  S: longint;

  Temp: ty128;

begin

  for i := 0 to 3 do

    Temp[i] := 0;

  for j := 0 to 31 do begin

    {Collect bits from the column.}

    S := 0;

    for i := 0 to 3 do

      S := S or GetBit32(Block[i], j) shl i;



    {Put them through the S-box.}

    S := SBox^[S];

    {Put them in the result column.}

    for i := 0 to 3 do

      Temp[i] := Temp[i] or GetBit32(S, i) shl j;

  end;

  CopyBlock(@Temp, Block);

end;

3. A basic implementation of the algorithm3. A basic implementation of the algorithm3. A basic implementation of the algorithm3. A basic implementation of the algorithm

The basic implementation is very slow, but possibly easier to understand and easier to 
implement in hardware than the optimized ones.

3.1. Initial and final permutations3.1. Initial and final permutations3.1. Initial and final permutations3.1. Initial and final permutations

The basic way requires permuting the 128-bit data block and all subkeys before and after 
encryption or decryption to give the same results as the bitslice way [SP].

If we imagine the input block (or any subkey) as a matrix of 4 rows and 32 columns, 
where the first row contains numbers 0 to 31, the second 32 to 63, the third 64 to 95, 
and the fourth 96 to 127, with these numbers representing bit positions (0 being least 
significant), then the initial permutation simply transposes the matrix; if we then read the 
numbers of each row, we get 0, 32, 64, 96, then 1, 33, 65, 97, then 2, 34, 66, 98, and 
so on.

The final permutation is the inverse of the initial permutation.

procedure IP (var Input: ty128; var Output: ty128);

{Does the initial permutation. This is the inverse of the final permutation.

Source: page 19 of [SP].}

var

  i: integer;

begin

  for i := 0 to 127 do

    PutBit128(

      Output,

      i,

      GetBit128(

        Input,

        (i shr 2 + i shl 5) and 127

      )

    );

end;

procedure FP (var Input: ty128; var Output: ty128);

{Does the final permutation. This is the inverse of the initial permutation.

Source: page 19 of [SP].}

var

  i: integer;

begin

  for i := 0 to 127 do

    PutBit128(

      Output,

      i,

      GetBit128(

        Input,

        ((i shl 2) and 127) + i shr 5



      )

    );

end;

3.2. S-boxes3.2. S-boxes3.2. S-boxes3.2. S-boxes

Because the data block is transposed, the S-boxes cannot be applied column-wise on it 
as they normally would be.

(Subkeys, however, can still be generated the same as before, including the column-wise 
substitutions; they just have to be transposed with the initial permutation afterwards.)

Instead, we can simply imagine the block as one row of 128 bits, or 32 rows of 4 bits. 
Each consecutive group of 4 bits is substituted. The easiest way to implement this on a 
32-bit processor is to process one word at a time.

function SBox32 (Input: longint; Box: ptySBox): longint;

{Returns the results of putting a 32-bit integer into 8 copies of the

specified S-box.}

var

  i: integer;

  Result: longint;

begin

  Result := 0;

  i := 0;

  repeat

    Result := Result or longint(Box^[(Input shr i) and 15]) shl i;

    i := i + 4;

  until i = 32;

  SBox32 := Result;

end;

3.3. Encryption3.3. Encryption3.3. Encryption3.3. Encryption

To encrypt a block, we first apply the initial permutation. Then we execute 31 rounds of 
subkey mixing (XOR-ing), substitution (as just described), and a linear transformation 
(described next). Finally, we execute one more round, which mixes another subkey 
instead of the linear transformation, and apply the final permutation.

procedure Encrypt (var IOBlock: ty128; var Subkeys: tySubkeys);

{Encrypts a block. Source: page 3 of [SP] for the high level.}

var

  Round: integer;

  Block: ty128;

procedure RoundPrologue;

{Does the operations common to all rounds: XORs the subkey with the block and

puts it through the S-boxes.}

var

  i: integer;

begin

  XORBlockWithSubkey(Block, Subkeys[Round]);

  for i := 0 to 3 do

    Block[i] := SBox32(Block[i], @kSBox[Round and 7]);

end;

begin

  IP(IOBlock, Block);



  {Rounds 0 do 30.}

  for Round := 0 to 30 do begin

    RoundPrologue;

    LT(Block, @kLT);

  end;

  {Final round.}

  Round := 31;

  RoundPrologue;

  XORBlockWithSubkey(Block, Subkeys[32]);

  FP(Block, IOBlock);

end;

3.4. The linear transformation3.4. The linear transformation3.4. The linear transformation3.4. The linear transformation

The linear transformation takes the 128-bit data block and produces a new block. It does 
not depend on the key. In the basic way, each output bit is obtained by XOR-ing several 
bits of the input block. Which bits act as inputs for which output bit is specified by a 
table.

type

  tyLT = array [0 .. 127] of array [0 .. 6] of shortint;  {Linear transform.}

  ptyLT = ^tyLT;      {Pointer to a linear or inverse linear transformation.}

const

  kLT: tyLT =

    {Linear transformation; source: [SP], page 19}

    (

      (16, 52, 56, 70, 83, 94, 105),

      (72, 114, 125, -1, -1, -1, -1),

…
      (5, 11, 26, 80, 122, 126, -1),

      (32, 86, 99, -1, -1, -1, -1)

    );

procedure LT (var Block: ty128; Table: ptyLT);

{Does the linear or inverse linear transformation according to the specified

table.}

var

  i: integer;

  j: integer;

  Accumulator: Boolean;

  Temp: ty128;

begin

  for i := 0 to 127 do begin

    Accumulator := false;

    j := 0;

    while (j < 7) and (Table^[i][j] <> -1) do begin

      Accumulator := Accumulator <> (GetBit128(Block, Table^[i][j]) <> 0);

      {^ Use <> as XOR since GetBit128 returns 0 or nonzero, not 0 or 1}

      j := j + 1;

    end;

    PutBit128(Temp, i, Ord(Accumulator) {convert to 0 or 1});

  end;

  CopyBlock(@Temp, Block);

end;



3.5. Decryption3.5. Decryption3.5. Decryption3.5. Decryption

Decryption is the inverse of encryption. First, we apply the initial permutation (to undo 
the final permutation), then undo each encryption round by doing the same operations as 
for encryption, except in reverse, and using the inverse S-boxes and inverse linear 
transformation. Finally, we apply the final permutation.

procedure Decrypt (var IOBlock: ty128; var Subkeys: tySubkeys);

{Decrypts a block.}

var

  Round: integer;

  Block: ty128;

procedure RoundEpilogue;

{Does what is common to all decryption rounds: puts the block through the

inverse S-boxes, then XORs it with the current round subkey.}

var

  i: integer;

begin

  for i := 0 to 3 do

    Block[i] := SBox32(Block[i], @kInvSBox[Round and 7]);

  XORBlockWithSubkey(Block, Subkeys[Round]);

end;

begin

  IP(IOBlock, Block);

  {Undo the final round.}

  XORBlockWithSubkey(Block, Subkeys[32]);

  Round := 31;

  RoundEpilogue;

  {Undo rounds 30 to 0.}

  for Round := 30 downto 0 do begin

    LT(Block, @kInvLT);

    RoundEpilogue;

  end;

  FP(Block, IOBlock);

end;

3.6. Inverse linear transformation3.6. Inverse linear transformation3.6. Inverse linear transformation3.6. Inverse linear transformation

The inverse linear transformation is performed with the same algorithm as the linear 
transformation, except with a different table.

const

  kInvLT: tyLT =

    {Inverse linear transformation; source: [SP], page 20}

    (

      (53, 55, 72, -1, -1, -1, -1),

      (1, 5, 20, 90, -1, -1, -1),

…
      (11, 98, -1, -1, -1, -1, -1),

      (4, 27, 86, 97, 113, 115, 127)

    );



4. A bitslice implementation of the algorithm4. A bitslice implementation of the algorithm4. A bitslice implementation of the algorithm4. A bitslice implementation of the algorithm

In this implementation, the initial and final permutations are not needed because the 
substitutions are done in a column-wise manner, as when generating the subkeys.

4.1. The linear transformation4.1. The linear transformation4.1. The linear transformation4.1. The linear transformation

The linear transformation is a sequence of shifts, XORs, and left rotations. Its counterpart
in the basic implementation is what happens if this form is explicitly written out in 
equations for each bit.

    {The linear transformation.}

    Block[0] := Rotate(Block[0], 13);

    Block[2] := Rotate(Block[2], 3);

    Block[1] := Block[1] xor Block[0] xor Block[2];

    Block[3] := Block[3] xor Block[2] xor Block[0] shl 3;

    Block[1] := Rotate(Block[1], 1);

    Block[3] := Rotate(Block[3], 7);

    Block[0] := Block[0] xor Block[1] xor Block[3];

    Block[2] := Block[2] xor Block[3] xor Block[1] shl 7;

    Block[0] := Rotate(Block[0], 5);

    Block[2] := Rotate(Block[2], 22);

4.2. The inverse linear transformation4.2. The inverse linear transformation4.2. The inverse linear transformation4.2. The inverse linear transformation

    {The inverse linear transformation. The same steps as in the linear

    transformation are done in reverse and we subtract the rotation amounts

    from 32 so it goes the other way.}

    Block[2] := Rotate(Block[2], 32 - 22);

    Block[0] := Rotate(Block[0], 32 - 5);

    Block[2] := Block[2] xor Block[3] xor Block[1] shl 7;

    Block[0] := Block[0] xor Block[1] xor Block[3];

    Block[3] := Rotate(Block[3], 32 - 7);

    Block[1] := Rotate(Block[1], 32 - 1);

    Block[3] := Block[3] xor Block[2] xor Block[0] shl 3;

    Block[1] := Block[1] xor Block[0] xor Block[2];

    Block[2] := Rotate(Block[2], 32 - 3);

    Block[0] := Rotate(Block[0], 32 - 13);

4.3. S-box optimizations4.3. S-box optimizations4.3. S-box optimizations4.3. S-box optimizations

With the linear transformation and its inverse optimized for 32-bit processors and the 
initial and final permutations removed, the bottleneck of the algorithm become the S-
boxes, which are slow as they use loops and only work on a few bits at a time. The paper 
[SuS] presents a way to optimize S-boxes and their inverses to not require any loops or 
branches, and in particular to be suitable for use on x86 processors, which only have 2-
operand instructions and few registers. If we implement the S-boxes this way, we can get 
rid of tables for the S-boxes and get:

procedure Substitute (var Block: ty128; SBox: integer);

{Applies an S-box to a 128-bit vector. Source: pages 10 to 13 of the "Speeding

up Serpent" paper.}

var

  X0: longint;

  X1: longint;

  X2: longint;

  X3: longint;

  T: longint;  {Temporary register.}

begin



  X0 := Block[0];

  X1 := Block[1];

  X2 := Block[2];

  X3 := Block[3];

  case SBox of

    0:

      begin

        X3 := X3 xor X0;

        T := X1;

        X1 := X1 and X3;

        T := T xor X2;

        X1 := X1 xor X0;

        X0 := X0 or X3 xor T;

        T := T xor X3;

        X3 := X3 xor X2;

        Block[2] := X2 or X1 xor T;

        T := not T or X1;

        X1 := X1 xor X3 xor T;

        X3 := X3 or X0;

        Block[0] := X1 xor X3;

        Block[1] := T xor X3;

        Block[3] := X0;

      end;

    1:

      begin

        X0 := not X0;

        X2 := not X2;

        T := X0;

        X0 := X0 and X1;

        X2 := X2 xor X0;

        X0 := X0 or X3;

        X3 := X3 xor X2;

        X1 := X1 xor X0;

        X0 := X0 xor T;

        T := T or X1;

        X1 := X1 xor X3;

        X2 := (X2 or X0) and T;

        X0 := X0 xor X1;

        Block[3] := X1 and X2 xor X0;

        Block[1] := X0 and X2 xor T;

        Block[0] := X2;

        Block[2] := X3;

      end;

    2:

      begin

        T := X0;

        X0 := X0 and X2 xor X3;

        X2 := X2 xor X1 xor X0;

        X3 := X3 or T xor X1;

        T := T xor X2;

        X1 := X3;

        X3 := X3 or T xor X0;

        X0 := X0 and X1;

        T := T xor X0;

        Block[2] := X1 xor X3 xor T;

        Block[3] := not T;

        Block[0] := X2;

        Block[1] := X3;

      end;

    3:

      begin



        T := X0;

        X0 := X0 or X3;

        X3 := X3 xor X1;

        X1 := X1 and T;

        T := T xor X2;

        X2 := X2 xor X3;

        X3 := X3 and X0;

        T := T or X1;

        X3 := X3 xor T;

        X0 := X0 xor X1;

        T := T and X0;

        X1 := X1 xor X3;

        Block[3] := T xor X2;

        X1 := X1 or X0 xor X2;

        X0 := X0 xor X3;

        Block[1] := X1;

        Block[0] := X1 or X3 xor X0;

        Block[2] := X3;

      end;

    4:

      begin

        X1 := X1 xor X3;

        X3 := not X3;

        X2 := X2 xor X3;

        X3 := X3 xor X0;

        T := X1;

        X1 := X1 and X3 xor X2;

        T := T xor X3;

        X0 := X0 xor T;

        X2 := X2 and T xor X0;

        X0 := X0 and X1;

        X3 := X3 xor X0;

        T := T or X1 xor X0;

        X0 := X0 or X3 xor X2;

        X2 := X2 and X3;

        Block[2] := not X0;

        Block[1] := T xor X2;

        Block[0] := X1;

        Block[3] := X3;

      end;

    5:

      begin

        X0 := X0 xor X1;

        X1 := X1 xor X3;

        X3 := not X3;

        T := X1;

        X1 := X1 and X0;

        X2 := X2 xor X3;

        X1 := X1 xor X2;

        X2 := X2 or T;

        T := T xor X3;

        X3 := X3 and X1 xor X0;

        T := T xor X1 xor X2;

        X2 := X2 xor X0;

        X0 := X0 and X3;

        X2 := not X2;

        Block[2] := X0 xor T;

        T := T or X3;

        Block[3] := X2 xor T;

        Block[0] := X1;

        Block[1] := X3;

      end;



    6:

      begin

        X2 := not X2;

        T := X3;

        X3 := X3 and X0;

        X0 := X0 xor T;

        X3 := X3 xor X2;

        X2 := X2 or T;

        X1 := X1 xor X3;

        X2 := X2 xor X0;

        X0 := X0 or X1;

        X2 := X2 xor X1;

        T := T xor X0;

        X0 := X0 or X3 xor X2;

        T := T xor X3 xor X0;

        X3 := not X3;

        Block[3] := X2 and T xor X3;

        Block[0] := X0;

        Block[1] := X1;

        Block[2] := T;

      end;

    7:

      begin

        T := X1;

        X1 := X1 or X2 xor X3;

        T := T xor X2;

        X2 := X2 xor X1;

        X3 := (X3 or T) and X0;

        T := T xor X2;

        Block[1] := X3 xor X1;

        X1 := X1 or T xor X0;

        X0 := X0 or T xor X2;

        X1 := X1 xor T;

        X2 := X2 xor X1;

        Block[2] := X1 and X0 xor T;

        X2 := not X2 or X0;

        Block[0] := T xor X2;

        Block[3] := X0;

      end;

  end;

end;

procedure InverseSubstitute (var Block: ty128; SBox: integer);

{Applies an inverse S-box to a 128-bit vector. Source: pages 10 to 13 of the

"Speeding up Serpent" paper.}

var

  X0: longint;

  X1: longint;

  X2: longint;

  X3: longint;

  T: longint;  {Temporary register.}

begin

  X0 := Block[0];

  X1 := Block[1];

  X2 := Block[2];

  X3 := Block[3];

  case SBox of

    0:

      begin

        X2 := not X2;

        T := X1;



        X1 := X1 or X0;

        T := not T;

        X1 := X1 xor X2;

        X2 := X2 or T;

        X1 := X1 xor X3;

        X0 := X0 xor T;

        X2 := X2 xor X0;

        X0 := X0 and X3;

        T := T xor X0;

        X0 := X0 or X1 xor X2;

        X3 := X3 xor T;

        X2 := X2 xor X1;

        X3 := X3 xor X0 xor X1;

        X2 := X2 and X3;

        Block[1] := T xor X2;

        Block[0] := X0;

        Block[2] := X1;

        Block[3] := X3;

      end;

    1:

      begin

        T := X1;

        X1 := X1 xor X3;

        X3 := X3 and X1;

        T := T xor X2;

        X3 := X3 xor X0;

        X0 := X0 or X1;

        X2 := X2 xor X3;

        X0 := X0 xor T or X2;

        X1 := X1 xor X3;

        X0 := X0 xor X1;

        X1 := X1 or X3 xor X0;

        T := not T xor X1;

        X1 := X1 or X0 xor X0 or T;

        Block[2] := X3 xor X1;

        Block[0] := T;

        Block[1] := X0;

        Block[3] := X2;

      end;

    2:

      begin

        X2 := X2 xor X3;

        X3 := X3 xor X0;

        T := X3;

        X3 := X3 and X2 xor X1;

        X1 := X1 or X2 xor T;

        T := T and X3;

        X2 := X2 xor X3;

        T := T and X0 xor X2;

        X2 := X2 and X1 or X0;

        X3 := not X3;

        Block[2] := X2 xor X3;

        X0 := (X0 xor X3) and X1;

        Block[3] := X3 xor T xor X0;

        Block[0] := X1;

        Block[1] := T;

      end;

    3:

      begin

        T := X2;

        X2 := X2 xor X1;

        X0 := X0 xor X2;



        T := T and X2 xor X0;

        X0 := X0 and X1;

        X1 := X1 xor X3;

        X3 := X3 or T;

        X2 := X2 xor X3;

        X0 := X0 xor X3;

        X1 := X1 xor T;

        X3 := X3 and X2 xor X1;

        X1 := X1 xor X0 or X2;

        X0 := X0 xor X3;

        X1 := X1 xor T;

        Block[3] := X0 xor X1;

        Block[0] := X2;

        Block[1] := X1;

        Block[2] := X3;

      end;

    4:

      begin

        T := X2;

        X2 := X2 and X3 xor X1;

        X1 := (X1 or X3) and X0;

        T := T xor X2 xor X1;

        X1 := X1 and X2;

        X0 := not X0;

        X3 := X3 xor T;

        X1 := X1 xor X3;

        X3 := X3 and X0 xor X2;

        X0 := X0 xor X1;

        X2 := X2 and X0;

        X3 := X3 xor X0;

        X2 := X2 xor T or X3;

        Block[1] := X3 xor X0;

        Block[2] := X2 xor X1;

        Block[0] := X0;

        Block[3] := T;

      end;

    5:

      begin

        X1 := not X1;

        T := X3;

        X2 := X2 xor X1;

        X3 := X3 or X0 xor X2;

        X2 := (X2 or X1) and X0;

        T := T xor X3;

        X2 := X2 xor T;

        T := T or X0 xor X1;

        X1 := X1 and X2 xor X3;

        T := T xor X2;

        X3 := X3 and T;

        T := T xor X1;

        X3 := X3 xor T;

        Block[1] := not T;

        Block[2] := X3 xor X0;

        Block[0] := X1;

        Block[3] := X2;

      end;

    6:

      begin

        X0 := X0 xor X2;

        T := X2;

        X2 := X2 and X0;

        T := T xor X3;



        X2 := not X2;

        X3 := X3 xor X1;

        X2 := X2 xor X3;

        T := T or X0;

        X0 := X0 xor X2;

        X3 := X3 xor T;

        T := T xor X1;

        X1 := X1 and X3 xor X0;

        X0 := X0 xor X3 or X2;

        Block[3] := X3 xor X1;

        Block[2] := T xor X0;

        Block[0] := X1;

        Block[1] := X2;

      end;

    7:

      begin

        T := X2;

        X2 := X2 xor X0;

        X0 := X0 and X3;

        T := T or X3;

        X2 := not X2;

        X3 := X3 xor X1;

        X1 := X1 or X0;

        X0 := X0 xor X2;

        X2 := X2 and T;

        X3 := X3 and T;

        X1 := X1 xor X2;

        X2 := X2 xor X0;

        X0 := X0 or X2;

        T := T xor X1;

        X0 := X0 xor X3;

        X3 := X3 xor T;

        T := T or X0;

        Block[0] := X3 xor X2;

        Block[3] := T xor X2;

        Block[1] := X0;

        Block[2] := X1;

      end;

  end;

end;

In Pascal (and other high-level languages), we are not actually limited to 2-operand 
expressions, so that aspect of [SuS] is not helpful here (though we did eliminate some 
assignments to hopefully reduce the number of loads and stores). We have to trust the 
compiler to generate efficient code.

5. Security5. Security5. Security5. Security

In their original proposal [SC] as well as the specification for Serpent [SP], the authors 
say that Serpent is secure because it is based on the following principles:

• It uses 32 rounds, which is at least twice as many as needed to defeat all attacks 
that were known at the time.

• It is based on a substitution-permutation network; those are well-understood and 
therefore easier to analyze.

• The S-boxes were generated by a deterministic algorithm which optimized them 
for maximum resistance against linear and differential cryptanalysis.

• There are no weak keys (except too short ones).



5.1. Known attacks5.1. Known attacks5.1. Known attacks5.1. Known attacks

In 2000, Kohno, Kelsey, and Schneier presented the following attacks [KKS2000]:

Rounds  Key size Data required   Time   Space  Technique          

 6   256 512 known plaintexts   2^247  2^246  Meet in the middle

 6   all 2^83 chosen plaintexts   2^90   2^40   Differential

 6   all 2^71 chosen plaintexts   2^103  2^75   Differential

 6   192, 256 2^41 chosen plaintexts   2^163  2^45   Differential

 7   256 2^122 chosen plaintexts   2^248  2^126  Differential

 8   192, 256 2^128 plain/cipher pairs  2^163  2^133  Boomerang

 8   192, 256 2^110 chosen plaintexts   2^175  2^115  Amplified boomerang

 9   256 2^110 chosen plaintexts   2^252  2^212  Amplified boomerang

At approximately the same time, the same authors presented another amplified 
boomerang attack (a form of differential cryptanalysis), which was published slightly later 
[KKS2001]:

Rounds  Key size Data required   Time   Space  Technique          

 8   256 2^114 chosen plaintexts   2^179  2^119  Amplified boomerang

In 2001, Biham, Dunkelman, and Keller presented the following attacks [BDK2001]. Note 
that time is sometimes measured in memory accesses (not encryptions or decryptions) 
and memory is sometimes measured in bytes instead of blocks (1 block is 2^4 bytes). 
The rectangle attack is an improvement of the amplified boomerang attack.

Rounds  Key size Data required    Time      Space Technique   

 7   all 2^84 chosen plaintexts    2^85 MA   2^52 Differential

 8   256 2^84 chosen plaintexts    2^213 MA  2^84 Differential

10   256 2^126.8 chosen plaintexts  2^207.4   2^131.8 B Rectangle

10   256 2^126.8 chosen plaintexts  2^205  2^196 B Rectangle

In 2002, the same authors published the following attacks using linear cryptanalysis 
[BDK2002]:

Rounds  Key size Data required   Time     Space  Technique          

10   all 2^118 plain/cipher pairs  2^89 MA  2^45 Linear

10   192, 256 2^106 plain/cipher pairs  2^185    2^96 Linear

11   192, 256 2^118 plain/cipher pairs  2^187    2^193 Linear

In 2003, the same authors published the following attacks using differential-linear 
cryptanalysis [BDK2003]. The paper also contains a summary of all attacks known at 
that time.

Rounds  Key size Data required    Time     Space  Technique          

10   all 2^105.2 chosen plaintexts  2^123.2  2^40  Differential-linear

11   192, 256 2^125.3 chosen plaintexts  2^172.4 2^30  Differential-linear

11   192, 256 2^125.3 chosen plaintexts  2^139.2 2^60  Differential-linear

In 2009, Singh, Alexander, and Burman noticed that in some of the S-boxes, the 
nonlinear order of the output bits as a function of the input bits is only 2, not 3 as 
claimed by the designers [SAB2009].

In 2011, Nguyen, Wu, and Wang presented the following attacks using multidimensional 
linear cryptanalysis [NWW2011]:

Rounds  Key size Data required    Time     Space  Technique          

11   128 2^116 known plaintexts    2^107.5  2^104  Multidim. linear



11   128 2^118 known plaintexts    2^109.5 2^100  Multidim. linear

12   256 2^118 known plaintexts    2^228.8 2^228  Multidim. linear

12   256 2^116 known plaintexts    2^237.5 2^121  Multidim. linear

5.2. Timing side channel attacks5.2. Timing side channel attacks5.2. Timing side channel attacks5.2. Timing side channel attacks

While this was probably not known at the time, as the code path that the Serpent 
encryption and decryption procedures take is always identical and not dependent on the 
key, and so are the data accesses made to lookup tables (if they are used), Serpent 
should be immune to timing side channel attacks.

5.3. Power analysis side channel attacks5.3. Power analysis side channel attacks5.3. Power analysis side channel attacks5.3. Power analysis side channel attacks

The paper [PA] describes a power analysis attack on Serpent implemented on an 8-bit 
smart card. It claims that a 256-bit key can be found in less than 4 ms on average.

5.4. Comparison to AES5.4. Comparison to AES5.4. Comparison to AES5.4. Comparison to AES

There exist attacks on AES which break all rounds in less time (about 2^2) than a brute 
force search [TW2015]. For Serpent, no attack exists that would break more than 12 of 
32 rounds.

AES is also very vulnerable to timing side channel attacks; in very specific scenarios, a 
full key recovery has been demonstrated with 7 or less blocks of plaintext or ciphertext 
[AGM2016]. Hardware implementations, of course, do not suffer from this. There are no 
known timing side channel attacks on Serpent, and, as noted above, they are unlikely to 
be successful.

6. Speed and space requirements6. Speed and space requirements6. Speed and space requirements6. Speed and space requirements

Of the AES finalists, Serpent was claimed to be the fastest in hardware [SC], however 
Rijndael was faster in software and chosen for this reason.

Space-wise, the bitslice version of Serpent does not require much ROM. The only lookup 
tables are the S-boxes, and even if we use the optimized versions from [SuS], the size is 
not too large.

The way we implemented it temporarily stores the whole 560-byte prekey (132 words + 
8 extra words, of 32 bits) and the input key (32 bytes, redundant after the prekey has 
been generated) in RAM and then precomputes all subkeys, which take up 528 bytes (33 
times 32 bytes); a total of 1120 bytes, not counting the actual 16-byte data block and 
other temporary variables. We did it this way for simplicity. However, even this can be 
reduced if we only hold in memory the few words needed to generate required parts of 
the prekey and the subkeys "on the fly".

6.1. Comparison of the presented implementations6.1. Comparison of the presented implementations6.1. Comparison of the presented implementations6.1. Comparison of the presented implementations

We have presented three implementations:

• A basic implementation that needs the initial and final permutations, performs 
substitutions "horizontally", and performs linear transformations by XOR-ing 
individual bits. This is version A.

• A bitslice implementation that does not need the initial and final permutations, 
performs substitutions "vertically" (column-wise), and performs linear 
transformations by shifting, rotating, and XOR-ing 32 bits at a time. This is version 
B.



• An optimized variation of version B with S-boxes implemented as specified in 
[SuS]. This is version C.

To test correctness and measure speed, the following code was used:

procedure Test;

{Tests encryption and decryption.}

type

  tyTestVector = record

    Key: ty256;

    Plaintext: ty128;

    Ciphertext: ty128;

  end;

const

  {$IfDef FPC}

    {Test vectors}

    {$I Vectors.inc}

  {$EndIf}

  {Test vector for speed test}

  kInput: ty128 = (0, 0, 0, 0);

  kKey: ty256 = ($80, 0, 0, 0, 0, 0, 0, 0);

  kExpectedOutput: ty128 = (

    longint($12AA23A2),

    longint($0E3C4688),

    longint($BD8EE32B),

    longint($C0165682)

  );

  {Number of iterations for speed test}

  kNumIterations = {$IfDef kDebug} 1 {$Else} 100000 {$EndIf};

var

  {$IfDef FPC}

    Start: TTimeStamp;

  {$EndIf}

  IOBlock: ty128;

  Encrypted: ty128;

  Key: ty256;

  Subkeys: tySubkeys;

  i: integer;

  j: longint;

  Correct: Boolean;

procedure StartTimer;

begin

  {$IfDef FPC}

    Start := DateTimeToTimeStamp(Now);

  {$EndIf}

end;

procedure StopTimer;

begin

  {$IfDef FPC}

    WriteLn(DateTimeToTimeStamp(Now).Time - Start.Time, ' ms');

  {$Else}

    WriteLn;

  {$EndIf}

end;

function BlocksDiffer (var A: ty128; B: pty128): Boolean;

{Checks whether block A matches the expected block B.}

var

  i: integer;

begin



  BlocksDiffer := false;

  for i := 0 to 3 do

    if A[i] <> B^[i] then begin

      BlocksDiffer := true;

      Exit;

    end;

end;

begin

  {$IfDef FPC}

    {Correctness test}

    Correct := true;

    for i := 0 to 1283 do begin

      Move(kTestVectors[i].Key, Key, 32);

      PrepareSubkeys(Key, Subkeys);

      CopyBlock(@kTestVectors[i].Plaintext, IOBlock);

      Encrypt(IOBlock, Subkeys);

      if BlocksDiffer(IOBlock, @kTestVectors[i].Ciphertext) then begin

        WriteLn('Encryption failed for test vector ', i);

        PrintBlock('Encrypted:', IOBlock);

        PrintBlock('Expected: ', kTestVectors[i].Ciphertext);

        Correct := false;

      end;

      CopyBlock(@kTestVectors[i].Ciphertext, IOBlock);

      Decrypt(IOBlock, Subkeys);

      if BlocksDiffer(IOBlock, @kTestVectors[i].Plaintext) then begin

        WriteLn('Decryption failed for test vector ', i);

        PrintBlock('Decrypted:', IOBlock);

        PrintBlock('Expected: ', kTestVectors[i].Plaintext);

        Correct := false;

      end;

    end;

    if Correct then

      WriteLn('All test vectors passed');

  {$EndIf}

  {Speed test - also a correctness test for Turbo Pascal as the test vector

  file is too large for it}

  WriteLn('Measuring speed:');

  Move(kKey, Key, 32);

  PrepareSubkeys(Key, Subkeys);

  Write('Encrypting (', kNumIterations, ' iterations)... ');

  StartTimer;

  for j := kNumIterations - 1 downto 0 do begin

    CopyBlock(@kInput, IOBlock);

    Encrypt(IOBlock, Subkeys);

  end;

  StopTimer;

  {$IfNDef FPC}

    PrintBlock('Encrypted:', IOBlock);

    PrintBlock('Expected: ', kExpectedOutput);

  {$EndIf}

  Write('Decrypting (', kNumIterations, ' iterations)... ');

  CopyBlock(@IOBlock, Encrypted);

  StartTimer;

  for j := kNumIterations - 1 downto 0 do begin



    CopyBlock(@Encrypted, IOBlock);

    Decrypt(IOBlock, Subkeys);

  end;

  StopTimer;

  {$IfNDef FPC}

    PrintBlock('Decrypted:', IOBlock);

    PrintBlock('Expected: ', kInput);

  {$EndIf}

end;

The test vectors were obtained from [TV]. To be used in the program, they were first 
permuted and converted to Pascal syntax with the program that is listed in Appendix B.

All code was compiled and tested with Free Pascal 3.0.4 with options -O3 -Si on an AMD 
FX-9590 processor. Each version was run 5 times, encrypting and decrypting a 128-bit 
block with a 256-bit key 100000 times (1600000 bytes; 1.6 Mb or about 1.5 MB), and 
the measurements were averaged. The following table shows the average encryption and 
decryption time (in milliseconds) for each version:

Encryption Decryption

A    16215.8    15100.6

B     1835.6     1765.8

C       71.0       71.2

The following table shows the speed in Mb/s:

Encryption Decryption

A   0.098669   0.105956

B   0.871650   0.906105

C  22.535210  22.471910

Considering that the fastest version at the time of Serpent's submission to the AES 
competition achieved over 45 Mb/s on a 200 MHz Pentium, this is not very good. 
However, we used Pascal and did not make any processor-specific optimizations; with C 
or assembly, the speed would be much higher.

6.2. TrueCrypt implementation and comparison to AES6.2. TrueCrypt implementation and comparison to AES6.2. TrueCrypt implementation and comparison to AES6.2. TrueCrypt implementation and comparison to AES

The following table shows encryption and decryption speed (in Mb/s) of Serpent as 
implemented in TrueCrypt, compared to Rijndael (AES), which TrueCrypt can also use. 
The measurement was done by running TrueCrypt's built-in benchmark on the same 
processor, with parallelization and AES hardware acceleration disabled.

Encryption Decryption

AES     1120.0     1240.0

Serpent      529.6      504.8

TrueCrypt is written in C, implements the S-boxes as in [SuS], and unrolls most loops.

6.3. Hardware implementation and comparison to AES6.3. Hardware implementation and comparison to AES6.3. Hardware implementation and comparison to AES6.3. Hardware implementation and comparison to AES

The paper [HW] compares hardware implementations of Serpent and AES. Serpent was 
found to be slightly slower (1.96 Gb/s vs. 2.26 Gb/s), however the implementation of 
AES only supported 128-bit keys and therefore used 10 rounds. If we assume that the 
required time increases linearly with the number of rounds, a 256-bit implementation of 
AES with 14 rounds would have a speed of about 1.61 Gb/s, which is slower than 
Serpent.



7. Conclusion7. Conclusion7. Conclusion7. Conclusion

Serpent does not seem to have many drawbacks, although for an efficient software 
implementation, one has to resort to novel ways of optimizing the S-boxes, and the 
result is still barely half as fast as AES. However, it seems to be at least as secure as 
AES.
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A. Utility functionsA. Utility functionsA. Utility functionsA. Utility functions

The Pascal functions presented so far call a few utility functions. Here they are for the 
sake of completeness. Note that concatenating all the parts of the program in the same 
order as they were presented is not enough to reconstruct the whole program; Pascal's 
program structure rules must be respected.

function GetBit128 (var X: ty128; Index: integer): longint;

{Gets a bit from a 128-bit vector. Returns 0 or nonzero.}

begin

  GetBit128 := X[Index shr 5] and (longint(1) shl (Index and 31));

end;

procedure PutBit128 (var X: ty128; Index: integer; Value: longint);

{Writes a bit into a 128-bit test vector.}

var

  Mask: longint;

begin

  Mask := longint(1) shl (Index and 31);

  Index := Index shr 5;  {This is now the index of the bit in the longint.}

  if Value = 0 then

    X[Index] := X[Index] and not Mask

  else

    X[Index] := X[Index] or Mask;

end;

procedure PrintHex (Input: longint);

{Prints a 32-bit integer in hexadecimal.}

const

  kNumerals: array [0 .. 15] of char =

    (

      '0', '1', '2', '3', '4', '5', '6', '7',

      '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'

    );

var

  i: integer;

begin

  i := 32 - 4;

  repeat

    Write(kNumerals[(Input shr i) and 15]);

    i := i - 4;

  until i < 0;

end;

procedure PrintBlock (Description: string; Input: ty128);

{Prints a 128-bit vector in hexadecimal.}



var

  i: integer;

begin

  Write(Description, ' ');

  for i := 3 downto 0 do begin

    PrintHex(Input[i]);

    if i <> 0 then

      Write('|');

  end;

  WriteLn;

end;

function GetBit32 (X: longint; Index: integer): longint;

  {$IfDef FPC} inline; {$EndIf}

{Gets a bit from a 32-bit integer. Returns 0 or 1.}

begin

  GetBit32 := (X shr Index) and 1;

end;

function Rotate (Input: longint; Amount: byte): longint;

  {$IfDef FPC} inline; {$EndIf}

{Does a left rotation.}

begin

  Rotate := Input shl Amount or Input shr (32 - Amount);

end;

procedure CopyBlock (Src: pty128; var Dst: ty128);

  {$IfDef FPC} inline; {$EndIf}

{Copies a block. The source is specified with a pointer so that constants can

be used.}

begin

  Move(Src^, Dst, 16);

end;

procedure XORBlockWithSubkey (var Block: ty128; var Subkey: ty128);

{XORs a block with a subkey.}

begin

  Block[0] := Block[0] xor Subkey[0];

  Block[1] := Block[1] xor Subkey[1];

  Block[2] := Block[2] xor Subkey[2];

  Block[3] := Block[3] xor Subkey[3];

end;

B. Test vector conversion programB. Test vector conversion programB. Test vector conversion programB. Test vector conversion program

The following Python program reads test vectors (from [TV]) and produces a file that 
can be included in the Pascal program:

def Permute(S):

  """

  Takes a string of hexadecimal digits and reverses the order of the bytes in

  it, then reverses the order of the 32-bit words in it, then transforms it

  into Pascal syntax.

  """

  # Reverse the order of the bytes.

  S2 = ""

  i = len(S) - 2

  while i >= 0:

    S2 += S[i : i + 2]

    i -= 2



  # Reverse the order of the 32-bit words.

  S = ""

  i = len(S2) - 8

  while i >= 0:

    S += S2[i : i + 8]

    i -= 8

  # Convert to Pascal syntax.

  S2 = "("

  for i in range(0, len(S), 8):

    S2 += "longint($" + S[i : i + 8] + ")"

    if i != len(S) - 8:

      S2 += ", "

  S2 += ")"

  return S2

Output = open("Vectors.inc", "w")

Output.write(

  "kTestVectors: array [0 .. 1283] of tyTestVector =\n" + \

  "\t(\n"

)

Counter = 0

InKey = False

for Line in open("Vectors.txt", "r"):

  if "Set" in Line:

    Id = Line.strip()

  elif "key=" in Line:  # First half of the key

    Key = Line[31 :].strip()

    InKey = True

  elif InKey:  # Second half of the key

    Key = Permute(Key + Line[31 :].strip())

    InKey = False

  elif "plain=" in Line:

    Plaintext = Permute(Line[31 :].strip())

  elif "cipher=" in Line:

    Ciphertext = Permute(Line[31 :].strip())

  elif "encrypted=" in Line or "decrypted=" in Line:

    Output.write(

      "\t\t{" + str(Counter) + ": " + Id + "}\n" + \

      "\t\t(\n" + \

      "\t\t\tKey: " + Key + ";\n" + \

      "\t\t\tPlaintext: " + Plaintext + ";\n" + \

      "\t\t\tCiphertext: " + Ciphertext + ";\n" + \

      "\t\t)" + ("" if Counter == 1283 else ",") + "\n"

    )

    Counter += 1

Output.write("\t);")

Output.close()


