Cryptography and Computer Security

SHA-3

Why and how improving the SHA-2 standard even though there are
no known attacks against it?

Niklas Schelten

Technische Universitdt Berlin - Electrical Engineering and Computer Science

26th January 2018

Abstract

Cryptographic Hash functions are widely needed in the cryptography for proof-of-
work systems (such as digital signatures), verifying passwords and a lot more. For
that it is, however, very important that the cryptographic hash functions are secure
and fast to compute. In 2012 a new hash function was standardized by the NIST in a
competition, the so called SHA-3. In this paper we explain why a new hash function
is needed and how it works. We are doing that by having a look at the history
of cryptographic hash functions and examining the competition for the SHA-3
function. Furthermore, we describe and analyze the new hash function and compare
its security to other established hash functions. It reveals that there is no immediate
need for a new hash function, nor was there when starting the competition. However,
Ni1sT decided after publications of exploits against the approach of the predecessor
SHA-2 that it would be good to have a new and better hash function. Until now
there was no real need for the new hash algorithm but the cryptographic publicity
is calmed by the knowledge that in the case of an exploit that would deem SHA-2
insecure, there is a new hash function with a substantially different approach.

Contents

(l__Introduction 1
1
2.1 Parameters and Variabled 1
[2.2 Basic Operations| 2

[3 Cryptographic Hash Algorithms| 2
[4 History of the Secure Hash Algorithms| 3
M1 Until SHA-2I . . . 00 0 3
[4.2 SHA-3 Competition| 4

6 Design of SHA-3| 4
Padding| e)

6.2 Block-wise Permutationl o000 5
B3 Varianfd o 6

6
[6.1 Security Concerns of Hash Algorithms| 6
[6.2 Comparison with Previous Cryptographic Hash Algorithms|. 7
[6.2.1 Different Construction Approaches| 7

[6.3 Comparison with Competitors| 9
((__Conclusion| 12
0 DD d 14

1 Introduction

Cryptographic hash function are a complicated but really important problem for today’s math-
ematicians. There is a lot of research going on and, therefore, also a lot of ideas how to improve
cryptographic hash algorithms. With this paper I want to clarify the need of a new standard
of hash algorithms because it is far from apparent why a working standard should be improved
spending more than five years of heavy research. Furthermore, I want to compare different
kind of hash functions and point to their differences and what consequences are following from
that. My third motivation for writing this paper is to clarify how exactly the SHA-3 standard
can be implemented because there are a lot of different approaches on how to calculate the
hash but all of them share that they are difficult to understand. Therefore, I try to make the
complicated calculations as easy to follow as possible.

As mentioned, there is a whole lot of work going into cryptographic hash algorithm from which
probably NIST is the organization with the most publications as they are standardizing the
SHA-Family. However, there are also a lot of publication about possible attacks against dif-
ferent kind of hash algorithm which I will mention throughout my paper. Also for the general
definitions of cryptographic hash algorithms there are a lot of good books and I chose to base
my paper partly on the Second Edition of Stinson’s Cryptography: Theory and Practice.

My paper is organized in roughly four sections: First we will introduce the general definition
of cryptographic hash algorithms in Section |3 Then we will have a look at the history of hash
algorithms and specifically the SHA-Family in Section [dl Furthermore, we will examine the
detailed structure of SHA-3 in Section |5 and, finally, come to the security concerns of cryp-
tographic hash algorithms in Section [0} In that section we will define the security concerns of
hash algorithms and also compare the security of SHA-3 to other hash functions.

2 Glossary

2.1 Parameters and Variables

b The length of the state vector in bits.

¢ The capacity of a Sponge construction. ¢ =b —r.

[A predefined constant of the KECCAK algorithm. For SHA-3 it is defined as [= 6.
n The hash length in bits.
m The message length in bit.

g The amount of padding-bytes.

q» The amount of padding-bits.

r The rate/block length in bits of the sponge function.

b

w length of a lane in the state vector. w = 5.

2.2 Basic Operations

0x00™ A string consisting of n consecutive bytes (8 bits) of Os.
X @Y Binary exclusive-OR, also written as XOR. For example 0011 ¢ 0101 = 0110.
X&Y Binary AND. For example 0011&0101 = 0001.
=X Binary NOT. For example —01 = 10.
X||Y Concatenating of two strings. For example 1010[|1100 = 10101100.

ali, 7, k| a is the state vector which is aligned as a three-dimensional block (Figure (1)) with 0 <7 <
5,0 < j<5and0 < k < w. For a one-dimensional vector the index isl = (5i + j) - w + k.

ali, j] concatenating ali, 7, 0]||a[i, 7,1]|| . .. ||ali, 7,w — 1]. This is also called a line.

xr < n rotates a string x bitwise by n bits to the left. For example 101000 < 2 = 100010.

=

j
k

4 it state

>

Figure 1: The layout of the state vector

3 Cryptographic Hash Algorithms

Douglas R. Stinson defines a hash family as follows: [2]
Definition. A hash family is a four-tuple (X,Y,KC,H), where the following conditions are
satisfied:

1. X is a set of possible messages

2. Y is a set of possible message digests or authentication tags

3. K, the keyspace, is a finite set of possible keys

4. For each K € K, there is a hash function hx € H. Each hig : X —).

He also mentions unkeyed hash functions h : X —) where X and) are the same as in the
above definition. The SHA-FAMILY is a family of such unkeyed hash functions, which is why
we will focus on those.

In most cases a hash function is a function that maps an arbitrary sized input into a fixed
sized output. Stinson called the output message digest or authentification tag, however, we will
continue to refer to the output plainly as the hash. A hash function becomes a cryptographic
hash functions if it is infeasible to invert and infeasible to generate a message z; that generates
the same hash as h(zy). We will go into much more detail in Section [f} Whenever we say hash
function we referring to a cryptographic hash function unless otherwise specified.
Additionally, there are some “nice-to-have” features for hash functions: Firstly, that it is
“pseudo-random”, meaning that only a small change of the message results in a totally dif-
ferent hash and, secondly, that it is somewhat fast to calculate. Again, we will go into more
detail about what fast means in Section [6]

Hash functions have a variety of use-cases:

e A Proof-Of-Work is for example used in Bitcoin-Mining and also a lot of other systems
where it is important to proof who did a specific set of work. For example digital signatures
also rely on hashes to proof that the message is from the owner you expect it to be and
that the message integrity holds.

e Password Verification is a really important topic in the 21st century as everyone is
using passwords to log-in to any kind of systems on a daily basis. Passwords need to
be very secure and, on the other side, often need to be validated on the other end of
the world. To make sure that this is working without an interfering attacker being able
to “steal” the password, the passwords are salted and then hashed. The hash of the
password is then sent to the receiving end making it impossible (really hard, see Section o]
again) for an attacker to get the plain text password.

e File Identifiers are another important use-case for hash functions. A lot of file systems,
for example source code management systems like Git or peer-to-peer systems rely on
checksums to safely identify a file. As a checksum is basically a hash function without
some of its security factors they are not as much researched as hash functions. Therefore,
most systems use hash functions for identifying files.

4 History of the Secure Hash Algorithms

The Secure Hash Algorithms are a family of cryptographic hash function that are standardized
and published by the National Institute of Standards and Security (NIST).

4.1 Until SHA-2

The first standard is today known as SHA-0 which was published as a component of DSA (Di-
gital Signature Algorithm) for the DSS (Digital Signature Standard) in 1993. It was developed
in cooperation with the NSA (National Security Agency) and has similarities in its design to the
MD/ (Message Digest Algorithm 4) by Ronald L. Rivest. However, it was withdrawn shortly
after its publications and replaced with the standard today know as SHA-1 which altered the
algorithm just a bit but in the same time improved its security by a lot, see F. Chabaud and

A. Joux [5].

SHA-2 is a set of four cryptographic hash algorithm published in 2001 by the NIST as a suc-
cessor for SHA-1. The four different variants feature different hash lengths of 224, 256, 384
and 512 bits. As of publications for attacks against SHA-1, NIST advised the transition to the
successor SHA-2 in 2006, see the official NIST policies [0].

4.2 SHA-3 Competition

As of these breakthroughs in attacks against hash functions of the SHA-1 and also MD4
and MD5, NisT decided to held two public workshops to assess the current situation of their
approved hash algorithms in 2004/2005. In November 2007 they announced that there will be
a competition to standardize a new hash algorithm (family) that will be referred to as SHA-3.
They announced this competition while knowing that at that moment no attacks against their
current hash algorithm family SHA-2 existed, see [7].

64 teams applied for the first round of the competition with only 51 being accepted to participate
in autumn of 2008. In late 2009 14 teams advanced to the second round of the competition
where five finalists were announced after a full year of public review. Those five finalists were
BLAKE, GrgsTL, JH, KECCAK and SKEIN.

Finally on the second October of 2012 NIST announced the final winner of the competition
after eight month of public review of the finalists as KECCAK. We will compare the finalists
algorithms to some extend in Section [6.3] see the NIST competition reports of the three rounds
[8, @, [10].

5 Design of SHA-3

I have implemented SHA-3 in C to make sure I get all the details correct. My implementation
can be found in Listing [T}

The SHA-3 function is a sponge construction, which is based on a fixed-length permutation
and will be explained in more detail in Section [6.2.1] That means that the message is hashed
in two basic steps: First it needs to be padded so that the total length is a multiple of the
rate r, which is the length of a block that will be XORed with the state each round. The rate is
calculated by

r=b—2-n (1)

where b is the size of the state vector and n the length of the hash. The size of the state vector
is derived from

b=25-2 (2)

[= 6 is just a parameter which still exists because there may be variants of KECCAK where [
differs from 6.

amount of bytes \ padded message ‘

g=1 M]|02:86
q=2 M ||020680
q> 2 M |[0206]]0x0072]]0280

Table 1: Padded message depending on the amount of padded bytes for byte-aligned messages.

5.1 Padding

The total amount of bits that the message needs to be padded with, such that the resulting
size is a multiple of r is calculated from the message length m as follows:

g =1 — (m mod r). (3)

Assuming that the message is byte-aligned (meaning that m mod 8 = 0 holds), the padded
message looks as shown in Table , where ¢ = /s is the amount of bytes to be padded, see
the N1ST standard [I]. The assumption that the message is byte-aligned is valid most of the
time because the use-cases imply that usually files are hashed and they are always byte-aligned.

5.2 Block-wise Permutation

Each block gets consecutively “absorbed” by the “sponge” and with that changes the internal
state vector. When all blocks got absorbed the first n bits of the internal state are “squeezed
out” as the resulting hash.

Each absorbing iteration starts with bitwise X0Ring the current state vector with the given
message chunk. After that the round function is applied to the state vector. It applies five
permutations in each of its 24 rounds[| The permutations are defined as follows where accessing
the state vector is done by three indices. The index of a one-dimensional state vector is
calculated by [= (5i + j) - w + k. Additionally, access can also be done to a whole “lane”,
meaning a string of concatenated bits for varying k, see the Glossary for more details.

1. #-Permutation: A linear mixing operation which computes parity bits and XORs them
with the state vector:

a) p; = a[O,j] D a[laj] D G[Q,j] D a[37j] D a[47]]
b) a'li, j] = ali, j] @ pj—1 & (pjr1 < 1)

2. p-Permutation: A rotation of each lane by a different offset for each line. The offsets are
listed in Table 2l For performance reasons they should be taken (mod w). It becomes
obvious that all offsets are triangular numbers.

3. m-Permutation: A simple permutation of bits of the following scheme:

a) d'[i,j, k] = a[(i + 37) mod 5,1, k]

'The amount of rounds can be reduced to compromise better performance for lower security. See Section

4. x-Permutation: A nonlinear operation:
a) d'[i,j] = ali, 5] @ (ma[(+ 1) mod 5, j] & a[(i + 2) mod 5, j])
5. (-Permutation: XORing with a round constant RC|[r| that can be examined in Table 3]

5.3 Variants

There are six predefined variants of SHA-3 which differ in the hash size and with that also
the rate. With changes to the hash size, also the security and the computation time changes,
apparently (See Section @ The hash lengths are 224, 256, 384 and 512.

Additionally, there are two so called SHAKE variants which have an arbitrary hash length.
However, we will not go into more detail here besides that the padding scheme for SHAKE
differs from the scheme presented in Section to make sure that their results differ.

6 Security

It is important that a cryptographic hash function meets some security criteria, which we briefly
covered in Section [3] Here we will explain what those criteria mean in detail and how SHA-3
manages to meet those and also compare SHA-3 with other important hash algorithms.

6.1 Security Concerns of Hash Algorithms

A cryptographic hash function needs to hold all three of the following resistances: [2]

e Pre-Image Resistance: For a given h € H and y € Y, finding x € X such that h(z) =y
is infeasible.

e Second Pre-Image Resistance: For a given h € H and x € X, finding 2’ € X, 2’ # x
such that h(x) = h(2’) is infeasible.

e Collision Resistance: For a given h € H, finding x, 2" € X',z # 2’ such that h(z) = h(2’)
is infeasible.

It is not defined what infeasible in that specific context means. However, one can assume it
to mean that it is most certainly beyond current computers to be able to break any of the
above resistances within a timespan where the systems needs its security. Because that does
not really make it specific, we will give a more specific answer to that question here. It should
be enjoyed with care as it won’t hold for ever. The resistances above hold if it takes at least
280 computations of h € H to break it.

There is also another, theoretical definition which origins from the computational complexity
theory. It states that a problem is infeasible to solve if there exists no algorithm which solves
it in polynomial time. However, that definition is probably even more difficult because for
small hash length even a exponential algorithm for breaking any of the stated resistances could

terminate in a reasonable time.ﬂ See the key management paper from Nist [11].

Additionally, it can be shown that collision resistance implies second image resistance but not
preimage resistance. Furthermore, in reality a hash function is needed to behave as random
as possible (often called random oracle) which means especially that it should not be able to
retrieve any valuable information about the message when only having the hash. On the other
hand it needs to be deterministic and efficiently to compute.

6.2 Comparison with Previous Cryptographic Hash Algorithms

Besides the hash algorithms we briefly introduced in Section 4| (SHA-1 and SHA-2) there are
also MD4 and MD5 where for MD4 the first full collision attack has been published in 1995
and MD5’s security has also been compromised by different exploits. As of 2009 it is widely
considered broken states CERT [13]. MD5 has been one of the most used hash algorithms and,
therefore, is still in use in a lot of software even though its discouragement.

As MD4 and SHA-1 are both succeeded by another standard we will compare the security of
SHA-3 only to the successors MD5 and SHA-2.

6.2.1 Different Construction Approaches

Both algorithms from above, MD5 and SHA-2, are based on the Merkle-Damgard construction
and it is, therefore, assumed that both algorithm face similar weaknesses. On the other side
there is the sponge construction used by SHA-3. Here we will compare those two and with
that also compare the hash functions.

M M My M,

Al L

f f f

—)

A4
) 4

Figure 2: A Merkle-Damgard construction

Merkle-Damgard Construction This construction was discovered in 1989 by Merkle and
Damgard independently and relies on a cryptographic compression function

c:{0,1}™ x {0,1}" — {0,1}" (4)

2Similarities to RSA can be found here: RSA relies on integer factorization being infeasible. At the moment
no algorithm with polynomial run-time is known to solve an integer factorization. However, RSA is only
deemed secure with a key length of at least 1024 bits because with smaller keys it could be possible to solve
the integer factorization in reasonable time, see [12].

It takes a m bit message and a n bit chaining value and is to be distinguished from a data
compression function because the purpose of a cryptographic compression function is to be
difficult to be inverted. That is, why it is often also referred to as a one-way compression
function. A data compression function’s use, on the other hand, is to be able to invert (lossless)
or approximately invert (lossy) the function which would be useless for hashing.

A Merkle-Damgard hash function, A, is created by first padding the message to a multiple of m
bits and then chaining compression functions as seen in Figure 2] Formally spoken it is defined
as follows:

Hy=1V (5)
H; = c(M;, H;_,) ie{1,2,... ¢ (6)
h(M) = h, (7)

Here IV is an initiation value with a n-bit length and the whole message M (including the
padding) is broken up into ¢ m-bit sized message blocks M;.

The padding is done by adding a 1 at the end of the message and then filling up with the
necessary amount of 0’s while the binary encoding of the message length is added at the end
of the message. This kind of padding is named after the construction itself as it was unique at
that time, see [14].

Merkle and Damgard claim that the security, both, collision resistance and preimage resistance,
of the compression function is being promoted to the hash function itself. Though, it is sufficient
to use a secure compression function in order to have a secure hash function. However, with
recent publications it became apparent that the Merkle-Damgard approach is limited by its
vulnerability to those three attacks:

e Long Second Pre-Image: It is shown by J. Kelsey and B. Schneider [15] that Second
Pre-Image resistance is greatly reduced in Merkle-Damgard constructions. Their findings
are based on a pattern expanding a message while still resulting in the same hash.

e Multicollision Attack: With a similar approach, they also show that multiple collisions
can be found and, thus, break the collision resistance.

e Herding Attack: The so called herding attack is able to first provide the hash and
afterwards “herd” any appropriate prefix to the message and the hash will still be correct.
This is, though, only possible when being able to compute multiple collisions on the hash
function (multicollision attack), see [16].

Sponge Construction On first sight a sponge construction may look similar to a Merkle-
Damgard even though it is substantially different from it and, thus, not vulnerable to the
above mentioned attacks. The key is that it builds upon a fixed length permutation

p:{0,1}" — {0,1}" (8)

The process of computing a hash with a sponge construction is a two step process. The first is
called the “absorbing” where it iteratively absorbs the padded message as blocks. The second
phase is called the “squeezing” where it outputs the hash of the message.

The sponge construction operates on a state vector which is modified each iteration and has
a size of r 4+ ¢ bits. In each iteration the first r bits are XORed with the message and after

Absorbing Squeezing
m M M, X X,
h
AT Y N M (. 2 v /M] Y T M\
1.k P oo b o > S =
X — — —
! I 5 I f
c|l|o » o —— > > > » >
v L | Nt L S N L N L P

Figure 3: A Sponge construction

that the permutation p is applied to the state vector. This behavior is visualized in Figure [3
Additionally, between two iteration also blank rounds can be applied where no message block
is XORed with the state vector but only p is applied. That is, however, not done in SHA-3.
The complexity of a collision attack is min(27?,2"?) while the complexity for a preimage and
second preimage attack is min(272,2"), see [I4]. That holds until today because there are no
attacks known that exposes any vulnerability to the sponge construction.

6.3 Comparison with Competitors

The competition for SHA-3 took about five years where the publicity inspected the submitted
hash functions and NI1ST announced the winner KECCAK in October 2012. But how did they
decided which hash function is the best? They splitted the competition in three rounds, each
eliminating possible competitors. First we will summarize the competitors of the third and
final round and afterwards explain why NIST chose KECCAK as a winner:

e BLAKE is based on a stream cipher (a ChaCha variant of Salsa20). However, before each
round a permuted message block (XORed with round constants) is added.

e GROSTL is very similar to, for example, MD5 and the previous SHAs because it also
uses the Merkle-Damgard construction. One main difference is that it uses a state twice
the hash size and truncates it in the end.

e JH has a constant state and input size of 1024- and 512-bits and also works with S-Boxes.
It can, therefore, also be compared to previous SHA and MD5 hash algorithms.

e KECCAK (the winner) has been explained in Section [5] It is based on a sponge construc-
tion.

e SKEIN is, similar as BLAKE, based on a cipher, the Threefish. Similar to the Salsa20
cipher it does not use any S-Boxes but alternating additions and X0Rs.

As seen in Section[6.1], there are a different factors that need to be taken into account. Therefore,
we will give a brief overview to what criteria were taken into account when evaluating the hash

functions. We are listing them in an ordered fashion, meaning that the first criteria was the
most important one for N1ST and so on, see [10].

Security The first and most important criteria was, of course, the security of a hash function.
It takes onto account the proven resistance to the various attacks described in Section [6.1],
cryptoanalysis of the hash function and also its parts (e.g. the Sponge construction, the per-
mutation), tweaks the finalists made after the second round to their hash function and some
other, minor, security concerns.

None of the five finalists had any real exploits that would open a vulnerability against them.
All of them were deemed very secure until further than 2030. In Table 5| the proven security of
the finalists and SHA-2, which is added as a reference, can be seen.

NiIsT also introduces the Security Margin, which can be calculated for round functions, which
all of the finalists are. They define it as “the fraction of the hash or compression function that
has not been successfully attacked. (For example, an attack on six rounds of a ten-round hash
function would give a 40 % security margin.)” [10]. The security margins of the finalists can
be viewed in Table[dl Here a hint is given that KECCAK may be the most secure hash function
out of those 5. However, the security margin is only one indication and, additionally, all of
the other algorithms were also considered really secure. Therefore, other criteria should also
influence the decision to which hash function should succeed SHA-2.

2011 Intel Core i7-2600K; SB+AES; sandy0; supercop-20120521
25

g
=

ey
L

iy
=

cycles/byte

Figure 4: Performance of software solution on current CPU with Current Vector Unit [10]

Cost and Performance The cost and performance is the easiest defined criteria as it is straight
forward. Here the computational complexity of the hash function and its memory usage is taken
into account. That is due to the importance for a hash function to be fast computable on devices
with low computational power and memory, e.g. Smart Cardsﬂ

3It may be good to know that in some rare cases (e.g. hashing salted passwords) it is not needed for a hash
function to be fast. When checking passwords, the user does not gain a lot by being able to log in in a

10

Throughput/area
4.5

4.0
35

3.0

VT
2.0 BETHZ
= GMU

Normalized by SHA-256
[
in

Keccak JH Grastl Skein Blake

Figure 5: Normalized throughput for three ASIC implementations of 256-bit variants® [I0]

It is important to notice that the cost and performance may vary a lot for software and hard-
ware implementations, so both should be taken into account.

The performance of an algorithm may depend on the hash and message length. As all algorithms
(including the SHA-2 for reference) implement a 224-, 256-, 384~ and 512-bit variant they can
be compared with each other. However, different approaches result in different performances
for a different hash size with a constant message size: KECCAK runs the same permutation
for all hash lengths, however, the higher the hash length, the smaller each message block is.
Therefore, it takes more iterations for the same message length. SKEIN and JH, both use the
same compression function for all hash lengths and run in about the same time. GR@STL,
BLAKE and SHA-2 use one compression functions for 224- and 256-bit, and another for 384-
and 512-bit hash length. This usually results in two different run times.

As previously mentioned the software performance can be substantially different from the hard-
ware performance, which is why NisT looked at both. In Figure [4] the performance of the dif-
ferent hashing algorithms can be seen on a current general-purpose processor and in Figure
one can see the performances of three different ASICs (Application-specific integrated circuit)
which are hardware implementations of the 256-bit variants.

The software performance of KECCAK is comparable bad, for example its 512-bit implement-
ation is about four-times slower than BLAKE-512. However, when looking at the hardware
performances KECCAK is the only algorithm that is faster than SHA-2 at all. In some imple-
mentations it is even faster by a factor of 4.

Algorithm and Implementation Characteristics The hash functions are also judged on their
flexibility and simplicity as a hash function that can easily be adjusted to all kind of platforms
is preferred.

fraction of seconds. On the other side, however, a slower hash function limits a possible attacker to less
attacks per second.

11

Some of the finalists suggested ways to use their hash algorithm in different approaches that
current hash functions do not cover. SKEIN was probably the one suggesting the most other
uses as for example their tweakable blockcipher, Threefish, and different applications like tree-
mode hashing etc.. However, KECCAK provided with the sponge construction an enormous
flexibility as it can easily be modified to output different sized hashes or trade off security for
performance in a controlled manner (See the security margin in Table [)).

All together, NIST decided for KECCAK as the final winner, however, mentioning that the other
finalists would, also, have been a good choice as a successor for SHA-2. Contradictory to the
expectation in the beginning of the competition, SHA-2 is a non-broken hash function until
now. However, NIST still partly based their choice on the fact that KECCAK takes a completely
different approach than SHA-2 and also has its strength in rather different fields (performance
on ASICs, flexibility, etc.).

Critical voices can never be avoided and so it comes that they also face NisT with SHA-3.
After the announcement of KECCAK as the winner NIST put a lot of effort into creating a
standard based on the KECCAK paper. For that there were tweaks necessary and also some
minor changes to the capacity and padding scheme which we will not describe in more detail
here. However, as in 2013 the so called Snowden leak‘f] inflicted a very skeptical view on
all US-national institutes, especially the NSA, concerns were rising that NIST made tweaks
to KECCAK in order to provide back-doors. The fear of back-doors is not unknown to hash
algorithms as it also exists for back-doors in SHA-2 but in general it is assumed that there is
no back-door. That is due to the fact that no one was ever able to find one until now and there
are no suspicious, e.g., constants in the algorithm.

As a result there are also publications trying to convince the public that SHA-3 is influenced
by the NSA and, therefore, insecure. However, most of the publications I have found, provide
misleading arguments or even plainly wrong statements. Therefore, I decided not to dedicate a
whole section to this topic. If, however, you are further interested, I am including two references:
The first is a post by Joseph Lorenzo Hall which contains most arguments for SHA-3 being
supposedly insecure. Additionally, he included an answer of the official KECCAK team (not
NiIST but the independent developer team that applied for the competition in the first place)
which obliterates each argument in a detailed way: [I8]. The second post is from the official
KECCAK website to summarize that SHA-3 still is the same as KECccAK: [19)].

7 Conclusion

There is a lot of research going into the development of cryptographic hash functions as they
become an increasingly important part in the todays world. The first hash algorithm dates
back to the 1970s, however, the first standard the N1ST published was in the mid 1990s. From

4VT: Virginia Tech; ETHZ: Eidgenossische Technische Hochschule Ziirich; GMU: George Mason University
The implementations had different optimizing approaches and, therefore, vary from each other.

SEdward Snowden leaked about 9,000 to 10,000 private documents of the NSA providing in depth detail on
the methods NSA uses to spy on everyday people with the help of back-doors and other unknown tricks, see
the (German) news report by “Spiegel” [17].

12

that point on a lot of exploits were published against different kind of approaches and concrete
algorithms. Omne of the most used approach to design a cryptographic hash function is the
Merkle-Damgard approach, however, due to its massive usage, also a lot of researching energy
went into developing exploits. It is based on a compression function that is iteratively used to
alter the state which then results in the hash. Originally the authors proved that the resist-
ances of the compression function will be inherited by the whole hash function. However, it
became apparent that some exploits could surpass this limitation making the approach vulner-
able. Combined with exploits against the compression function of SHA-1 the hash algorithm
was broken. Nevertheless, SHA-2 is still considered secure because its hash function is yet to
be broken.

NisT decided for a standardization of a new hash algorithm anyways and chose KECCAK. That
decision was to some extent influenced by the reason that it has its strength in other fields than
its predecessor: The sponge approach used by KECCAKs SHA-3 was never used in a commer-
cial cryptographic hash algorithm before but is still deemed to be very secure. It is, in contrast
to the Merkle Damgard approach, based on a fixed-length permutation which only permutes the
state each time a message block gets iteratively X0Red with it. Secondly, the hardware imple-
mentations of SHA-3 are up to four times faster than the SHA-2 hardware implementations
which becomes more important in today’s world as ASICs become more popular. Additionally
it is a very flexible approach, meaning that a trade-off between performance and security can be
done in a very secure manner by reducing its numbers of rounds (See security margin in Table [4)).

With these aspects in mind we can conclude that there was no immediate need for a new hash
algorithm standardization, however, it took the cryptographic community about five years to
come up with a hash function that mostly everyone considers to be safe. Additionally, the fact
that the today’s world desperately needs a cryptographic hash function makes it apparent that
it is good to have SHA-3 even though SHA-2 is still deemed to be very secure.

13

8 Appendix

j= 0 1] 190] 28] ol
j=1 36 | 300 6| 55| 276
j= 31 10 171 153 231
j= 105 | 45| 15| 21| 136
j= 210 | 66| 253 | 120 78

Table 2: Offsets for the p-Permutation. [3]

RC[0] || 0x0000000000000001 | RC[12] || 0x000000008000808B
RC[1] || 0x0000000000008082 | RC[13] || 0x800000000000008B
RC[2] || 0x800000000000808A | RC[14] {| 0x8000000000008089
RC[3] || 0x8000000080008000 | RC[15] || 0x8000000000008003
RC[4] || 0x000000000000808B | RC[16] || 0x8000000000008002
RC[5] || 0x0000000080000001 | RC[17] || 0x8000000000000080
RC[6] || 0x8000000080008081 | RC[18] || 0x000000000000800A
RC[7] || 0x8000000000008009 | RC[19] || 0x800000008000000A
RC[8] || 0x000000000000008A | RC[20] || 0x8000000080008081
RC[9] || 0x0000000000000088 | RC[21] {| 0x8000000000008080
RC[10] || 0x0000000080008009 | RC[22] || 0x0000000080000001
RC[11] || 0x000000008000000A | RC[23] || 0x8000000080008008

Table 3: The round constants for the «-Permutation. [3]

’ Algorithm H Security Margin ‘ Depth of Analysis ‘

BLAKE 1% High
GROSTL 40% Very High’|
JH 38% Low
KECCAK 79% Medium
SKEIN 56% Hight
SHA-2 62% Medium

Table 4: Security Margin of the finalists [10]

5These hash function have been substantially tweaked for the final round

14

n Domain Underlying | Primitive | Hash Security
Algorithm A - :
Extender | Primitive size size | Coll | Pre 2™ Pre Indiff
k=512 224 112 | 224 224 128
. bh=512 256 | 128 | 256 256 128
BLAKE HAIFA Block cipher =1024 184 192 384 184 756
bh=1024 512 | 256 | 512 512 256
512 224 112 | 224 128
56 — logs
Grostt | Grosg | Apairof 512 | 256 | 128 | 256 | 26 loml | g
*ros res permutations 1024 384 | 192 | 384 256
512 —logsLL
1024 512 | 256 | 512 s 256
224 112 | 224 224 256
) 256 | 128 | 256 256 256
JH JH Permutation 1024 184 192 | 336 356 256
512 | 256 | 236 256 256
224 112 | 224 224 224
) 256 | 128 | 256 256 256
Keccak Sponge Permutation 1600 184 192 384 184 184
512 | 256 | 512 512 512
=512 224 112 | 224 224 256
. Tweakable _ 256 | 128 | 256 256 256
Skein UBI . b=512 -
block cipher =128 384 192 384 384 256
512 | 256 | 512 512 256
k=512 224 112 | 224
256 — log;L. 1
6 . b=236 256 | 128 | 256 =
SHA-2 MD Block cipher =104 334 192 384 A |
b=512 512 | 256 | 512 B =

Table 5: Proven Security of the SHA-3 finalists [10]

15

1#include<stdlib .h> 58 state| 8] = ROTL64(state[8], 55);
#include<string .h> 50 state[9] = ROTL64(state[9], 20);
s#include<stdint .h> 60 state[10] = ROTL64(state[10], 3);
#include <stdio .h> 61 state[l11l] = ROTL64(state[11], 10);
s#include” util .h” 62 state[12] = ROTL64(state [12], 43);
6#include” sha3 .h” 63 state[13] = ROTL64(state[13], 25);
7 61 state[14] = ROTL64(state [14], 39);
s#define NUMBEROFROUNDS 24 65 state[15] = ROTL64(state [15], 41);
9 66 state[16] = ROTL64(state[16], 45);
10// rotates gqword by n to the left 67 state[17] = ROTL64(state [17], 15);
11#define ROTL64(qword, n) \ 68 state[18] = ROTL64(state[18], 21);
12 ((gword) << (n) ((gword) >> (64 — (n)))) 60 state[19] = ROTL64(state[19], 8);
13 70 state [20] = ROTL64(state [20], 18);
14uint64_t keccak_round_constants | 71 state [21] = ROTL64(state [21], 2);
NUMBER.OF ROUNDS| = { 72 state [22] = ROTL64(state [22], 61);
15 0x0000000000000001ULL , 0x0000000000008082ULL 73 state[23] = ROTL64(state[23], 56);
, 74 state [24] = ROTL64(state [24], 14);
16 0x800000000000808AULL , 0x8000000080008000ULL 75}
, 76
17 0x000000000000808BULL , 0x0000000080000001ULL 77void keccak_pi(uint64_t =a) {
, 78 uint64_t al;
18 0x8000000080008081ULL, 0x8000000000008009ULL 79 al = a[l];
, 80 al 1] = a[6];
19 0x000000000000008AULL , 0x0000000000000088ULL s1 a[6] = a[9];
, 82 al 9] = a[22];
20 0x0000000080008009ULL , 0x000000008000000AULL 83 a[22] = a[l4];
, 84 af[ld4] = a[20];
21 0x000000008000808BULL , 0x800000000000008BULL 85 a[20] = a| 2];
, g6 al 2] = a[l2];
22 0x8000000000008089ULL , 0x8000000000008003ULL s7 a[l2] = a[13];
, 88 a[l3] = a[l9];
23 0x8000000000008002ULL , 0x8000000000000080ULL 8o a[l9] = a[23];
, 90 af[23] = a[l5];
24 0x000000000000800AULL , 0x800000008000000AULL 91 a[l5] = a| 4];
, 92 a| 4] = a[24];
25 0x8000000080008081ULL, 0x8000000000008080ULL 93 a[24] = a[21];
, 91 a[21l] = a[8];
26 0x0000000080000001ULL , 0x8000000080008008ULL 95 a[8] = a[l16];
27}; 96 a[l6] = a[5];
28 97 al 5] = a[3];
29void keccak_theta(uint64_t *a) { 98 al 3] = a[l18];
30 unsigned int j; 90 a[l8] = a[l7];
31 uint64_t p[5], q[5]; 100 a[l7] = a[ll];
32 for (j = 0; j < 5; j++) 101 af[ll] = a[7];
33 pli]l = alj] a[j+5] ~ al[j+10] ~ a[j+15] “102 a[7] = a[l0];
alj+20]; 103 a[l0] = al;
34 104 // a[0] is left as is
35 q[0] = ROTL64(p([1], 1) "~ p[4]; 105}
36 q[l] = ROTL64(p([2], 1) "~ p[0]; 106
37 q[2] = ROTL64(p[3], 1) "~ p[l]; 107void keccak_chi(uint64_t *a) {
38 q[3] = ROTL64(p[4], 1) "~ p[2]; 108 unsigned int 1ij;
30 q[4] = ROTL64(p[0], 1) ~ p[3]; 109 for (i =0; i < 25; i 4= 5) {
10 110 uint64_-t a0 = a[0 + i];
41 for (j = 0; j < 5; j++) { 111 uint64_-t al = a[l + i];
12 alj] "= qljl; 112 al0 + i] "= Tal & a2 + i];
43 alj + 5] "= qalijl; 113 all + 1] "= "a[2 + i] & a[3 + i];
14 alj + 10] "= qljl; 114 al2 + i] "= "a[3 + i] & a[4 + i];
45 alj + 15] "= qljl; 115 a3 + i] "= Ta[4 + i] & a0;
16 alj + 20] "= q[jl; 116 al4d + i] "= "a0 & al;
17} 117}
18} 118}
19 119
s0void keccak_rho(uint64_t *xstate) { 120void permutation(uint64_t *state) {
51 state[1] = ROTL64(state[1], 1); 121 unsigned int round;
52 state[2] = ROTL64(state| 2], 62); 122 for (round = 0; round < NUMBEROFROUNDS;
53 state[3] = ROTL64(state| 3], 28); round++) {
54 state[4] = ROTL64(state| 4], 27); 123 keccak_theta(state);
55 state[5] = ROTL64(state| 5], 36); 124 keccak_rho (state);
56 state[6] = ROTL64(state[6], 44); 125 keccak_pi(state);
57 state[7] = ROTL64(state| 7], 6); 126 keccak_chi(state);

16

127 // iota

128 xstate "= keccak_round_constants[round];

120}

130}

131

132void process_block (uint64_t xhash, const
uint64_t xblock, unsigned rate) {

133 // one hash array item represents one lane
(64bit)

134

135 // XOR the block with the state

136 unsigned int 1i;

137 for (i = 0; i < rate/64; i++) {

138 hash[i] "= block[i];

139}

140 permutation (hash);

141}

142

143void sha3(int n, charx message, size_t length,
charx hash, int debug) {

144 unsigned rate = 1600—2xn;

145 unsigned block_size = rate / 8; // in byte

146

147 if (debug) {

148 printf(”message:\n”);

149 print_hex_memory (message, length);

150}

151

152 // add the padding

153 unsigned q = block_size —(length % block_size

1 char *msg;

55 if (q = 1)

15

156 msg = malloc(length+1);

157 memcpy (msg, message, length);
158 msg[length++] = 0x86;

159 } else if (g = 2) {

160 msg = malloc (length+2);

161 memcpy (msg, message, length);

162 msg [length++] = 0x06;
163 msg[length++] = 0x80;
164 } else {

165 msg = malloc(length+q);

166 memcpy (msg, message, length);
167 msg[length] = 0x06;

168 memset(&msg[length+1], 0, q—2);
169 length 4= q;

~

msg [length —1] = 0x80;

171}

172

173 if (debug) {

174 printf(”padded message:\n”);
175 print_-hex_memory (msg, length);
176}

177

178 // loop through all blocks

179 unsigned int i;

180 uint64_-t h[25];

181 memset(h, 0, sizeof(h[0])*25);
182 for (i = 0; i < length; i += block_size) {

183 uint64_t xblock = malloc(block_size);
184 memcpy (block , &msg[i], block_size);
185 process_block (h, block, rate);

186 free (block);

187

188 free (msg);
189 memcpy (hash, h, n/8);

190}
Listing 1: My implementation of SHA-3

References

[1]

[10]

Morris J. Dworkin, NIST: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions (published Aug 2015),
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-
and-extendable-output-functions| (last accessed 2018-01-09)

Douglas R. Stinson: Cryptograhpy: Theory and Practice 2nd Edition, CRC Press,
2002

TeamKeccak: Keccak specifications summary,
https://keccak.team/keccak_specs_summary.html (last accessed 2018-01-10)

National Institute of Standards and Technology: Secure Hash Standard (SHS)
(published Aug 2015)
https://csrc.nist.gov/publications/detail/fips/180/4/final (last accessed
2018-01-12)

Florent Chabaud and Antoine Joux: Differential Collisions in SHA-0 (published at
CRYPTO '98)
http://fchabaud.free.fr/English/Publications/sha.pdf (last accessed 2018-01-13)

National Institute of Standards and Technology: NIST Policy on Hash Functions
(published Mar 2006, Sep 2012 and Aug 2015)
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-
Functions (last accessed 2018-01-13)

National Institute of Standards and Technology: SHA-3 Project
https://csrc.nist.gov/projects/hash-functions/sha-3-project| (last accessed
2018-01-13)

Andrew Regenscheid (NIST), Ray Perlner (NIST), Shu-jen Chang (NIST), John Kelsey
(NIST), Mridul Nandi (NIST), Souradyuti Paul (NIST): Status Report on the First
Round of the SHA-3 Cryptographic Hash Algorithm Competition (published
Sep 2009)

https://csrc.nist.gov/publications/detail/nistir/7620/final (last accessed
2018-01-13)

Meltem Sénmez Turan (NIST), Ray Perlner (NIST), Lawrence Bassham (NIST), William
Burr (NIST), Donghoon Chang (NIST), Shu-jen Chang (NIST'), Morris Dworkin (NIST),
John Kelsey (NIST), Souradyuti Paul (NIST), Rene Peralta (NIST): Status Report on
the Second Round of the SHA-3 Cryptographic Hash Algorithm Competition
(published Feb 2011)
https://csrc.nist.gov/publications/detail/nistir/7764/final

(last accessed 2018-01-13)

Shu-jen Chang (NIST), Ray Perlner (NIST), William Burr (NIST), Meltem Sénmez
Turan (NIST), John Kelsey (NIST), Souradyuti Paul (NIST), Lawrence Bassham (NIST):
Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competi-
tion (published Nov 2012)

18

https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://keccak.team/keccak_specs_summary.html
https://csrc.nist.gov/publications/detail/fips/180/4/final
http://fchabaud.free.fr/English/Publications/sha.pdf
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/publications/detail/nistir/7620/final
https://csrc.nist.gov/publications/detail/nistir/7764/final

[12]

[15]

[16]

[17]

[18]

[19]

https://csrc.nist.gov/publications/detail/nistir/7896/final
(last accessed 2018-01-13)

Elaine Barker (NIST): Recommendation for Key Management, Part 1: General
(published Jan 2016)
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final

(last accessed 2018-01-14)

Thorsten Kleinjung and Kazumaro Aoki and Jens Franke and Arjen Lenstra and Em-
manuel Thomé and Joppe Bos and Pierrick Gaudry and Alexander Kruppa and Peter
Montgomery and Dag Arne Osvik and Herman te Riele and Andrey Timofeev and Paul
Zimmermann: Factorization of a 768-bit RSA modulus (published Feb 2010)
https://eprint.iacr.org/2010/006 (last accessed 2018-01-14)

CERT: MD5 vulnerable to collision attacks (published Jan 2009)
https://www.kb.cert.org/vuls/id/836068 (last accessed 2018-01-14)

Harshvardhan Tiwari; Centre for Incubation, Innovation, Research and Consultancy
(CIIRC) Jyothy Institute of Technology, Bangalore, Karnataka, India; India: Merkle-
Damgard Construction Method and Alternatives: A Review (published 12 2017)
https://jios.foi.hr/index.php/jios/article/view/1070/787 (last accessed
2018-01-14)

John Kelsey and Bruce Schneier: Second Preimages on n-bit Hash Functions for
Much Less than 2™ Work (published Nov 2004)
https://eprint.iacr.org/2004/304.pdf (last accessed 2018-01-14)

John Kelsey and Tadayoshi Kohno: Herding Hash Functions and the Nostradamus
Attack (published Feb 2006)
https://eprint.iacr.org/2005/281 (last accessed 2018-01-14)

Der Spiegel: NSA-Enthiillungen Chronologie der Snowden-Affare [German
news report] (published Jul 2013) http://www.spiegel.de/politik/ausland/nsa-
spaehaktion-eine-chronologie-der-enthuellungen-a-910838.html (last accessed
2018-01-20)

Joseph Lorenzo Hall: What the heck is going on with NIST’s cryptographic
standard, SHA-3? (published Sep 2013)
https://cdt.org/blog/what-the-heck-is-going-on-with-nist%E2%80%99s-
cryptographic-standard-sha-3/| (last accessed 2018-01-20)

KEeccak: Yes, this is still Keccak! (published Oct 2013)
https://keccak.team/2013/yes_this_is_keccak.html (last accessed 2018-01-20)

19

https://csrc.nist.gov/publications/detail/nistir/7896/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://eprint.iacr.org/2010/006
https://www.kb.cert.org/vuls/id/836068
https://jios.foi.hr/index.php/jios/article/view/1070/787
https://eprint.iacr.org/2004/304.pdf
https://eprint.iacr.org/2005/281
http://www.spiegel.de/politik/ausland/nsa-spaehaktion-eine-chronologie-der-enthuellungen-a-910838.html
http://www.spiegel.de/politik/ausland/nsa-spaehaktion-eine-chronologie-der-enthuellungen-a-910838.html
https://cdt.org/blog/what-the-heck-is-going-on-with-nist%E2%80%99s-cryptographic-standard-sha-3/
https://cdt.org/blog/what-the-heck-is-going-on-with-nist%E2%80%99s-cryptographic-standard-sha-3/
https://keccak.team/2013/yes_this_is_keccak.html

	Introduction
	Glossary
	Parameters and Variables
	Basic Operations

	Cryptographic Hash Algorithms
	History of the Secure Hash Algorithms
	Until SHA-2
	SHA-3 Competition

	Design of SHA-3
	Padding
	Block-wise Permutation
	Variants

	Security
	Security Concerns of Hash Algorithms
	Comparison with Previous Cryptographic Hash Algorithms
	Different Construction Approaches

	Comparison with Competitors

	Conclusion
	Appendix

