Cryptocurrency mining strategies comparison
David Klemenc

il
)

Abstract

This document describes possible mining strategies for miners with
slower hardware. It also provides a brief overview of the Bitcoin cryp-
tocurency, mining and the technologies involved.

Introduction Figure 1: https://gitlab.klemenc.io/
FRI/kripto

A cryptocurrency is a digital asset designed to work as a medium of

exchange that uses cryptography to secure its transactions, to control

the creation of additional units, and to verify the transfer of assets.

Cryptocurrencies use decentralized control as opposed to central-

ized electronic money and central banking systems. The world’s

first decentralized digital currency was introduced in 2008 and is

called Bitcoin. In this paper I will first explain how a prototypical

cryptocurrency works * and how to build one. Then I will analyze a * section: Cryptocurencies

miner probability of successfully minig a block (a miners hit rate) 2 2section: Can we ensure that a slower
and show a few strategies of improving the aforementioned proba- miner will have a hit rate > 0 7
bility. Lastly I will discuss possible implementation of the mentioned

mining strategies 3. 3 section: Discussion

Cryptocurencies

Cryptocurencies are a form of decentralized trustless verification
system based on digital signatures and hash functions.

A prototypical cryptocurency uses a communal ledger 4 to store 4ledger: a book or other collection of
all transactions made by users. A normal ledger stores transactions financial accounts
made by users, so they can calculate and redistribute founds on a
fixed period rather then having to pay after each transactions. (For
example a group of friends could write on a piece of paper how
much each has spend for drinks and food every day and after each
month they would calculate how much each is due. A possible prob-
lem to this approach is if one of the group does not show up at the
end of a month - this can be solved by first collecting money and
writing on the paper Alice receives 100 €, Bob receives 100€ ... and
then using this to calculate how much each individual has at the end
of the month). Cryptocurencies use a ledger similar to this with the
following rules:

e broadcast transactions

https://gitlab.klemenc.io/FRI/kripto
https://gitlab.klemenc.io/FRI/kripto

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 2

¢ only signed transactions are valid
¢ no overspending is allowed

¢ trust the ledger with the most computational work put into it
(Proof of work)

This means that verifying a transactions requires knowing the full
history of transactions up to that point (this is computationally im-
proved by validation chaning)

So we can look at Bitcoin as just a history of transactions.

Communal ledger

LEDGER
ID FROM WHAT TO AMOUNT SIGNATURE
0 Alice pays Bob 100BC ALICEO
1 Alice pays Bob 100BC ALICEL
2 Bob pays Oliver 112BC BOB2
5
Proof of work ©

7 The proof-of-work involves scanning for a value (in bitcoin termi-
nology this is referred to as a "nonce" &) that when hashed, such as
with SHA-256, the hash begins with a number of zero bits. The aver-
age work required is exponential in the number of zero bits required
and can be verified by executing a single hash.

Ledger organization (Block-Chain)

In the Bitcoin protocol the ledger is split into blocks. Each block
consist of a list of transactions together with a proof of work (it is
only valid if it contains a proof of work) and it must also contain the
proof of work of the previous block - thus creating a block-chain. If
we want to change block x, € [0, n], where n is the current block - we
need to compute the proof of work of all the blocks from x to n.

Block creation (mining)

Creating a proof of work is also called mining. To incentivize min-
ers we give them a block reward - which is a special transaction for
creating a proof of work. Block rewards do not contain a sender or
a signature and add to the total amount of money available. From
a miners perspective each block is similar to a miniature lottery. A

miner tries to guess the correct input for the hash function so he gets

5 Bitcoin internally uses ECDSA (Elliptic
Curve Digital Signature Algorithm) for
signing transactions

¢ Satoshi Nakamoto. Bitcoin: A peer-to-
peer electronic cash system, November
2008. URL https://bitcoin.org/
bitcoin.pdf

7 proof of work is the output of a miner
8 The "nonce" in a bitcoin block is a 32-
bit (4-byte) field whose value is set so
that the hash of the block will contain

a run of leading zeros. The rest of the
fields may not be changed, as they have
a defined meaning.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 3

the desired output - whichever miner guesses first gets the reward.
Statistically the fastest miner has the highest chance of guessing cor-
rectly thus getting the block reward.

For example, in Bitcoin the hashing algorithm is double-SHA256

9 (SHA256%) and the predefined structure is a hash less or equal to 9 Krzysztof Okupski. Bitcoin developer
reference. URL https://github.com/

a target value T. The success probability of finding a nonce n for a el N
minium/Bitcoin-Spec

given message msg, such that H = SHA2567 (msg||n) is less or equal

to the target T is

T
This will require a party attempting to find a proof of work to per-

form, on average, the following amount of computations

1 2256

PrlH<T] T

Block trust

Since an evil operator (Oliver) could potentially try to fool Alice by
creating a fraudulent block. Oliver sends the fraudulent block to Al-
ice (this block includes a payment from Alice to Oliver), but he does
not broadcast this block to the rest of the network. To accomplish
this, Oliver would have to find a valid proof of work before anybody
else. Alice wold now know about Olivers block, but she would also
hear conflicting block broadcasted from other miners. To keep fooling
Alice Oliver would have to keep guessing the proof of work before
other miners - which means that he would have to have more then
50% of the combined computational power - which is unlikely! If
Oliver does not posses such computational power - sooner or later
the competing block-chain will be longer and Alice will no longer
trust Olivers block-chain. This means that a new block can not be
trusted immediately - one should wait for a few more blocks before
trusting!

Miner incentives

As discussed earlier upon providing a valid proof of work for a given
block a miner gets a block reward. In the case of Bitcoin this reward
decreases geometrically over time, this is why there is another way

of incentivizing miners. You can add a transaction fee that is going

to the miner - this means that a given miner is more likely to include

your transaction into the block he is mining. *° * each Bitcoin block is limited to
approximately 2400 transactions

Can we ensure that a slower miner will have a hit rate > o0 ?

The reference miner implementations for Bitconin * and some other 1 Jeff Garzik. Pyminer. URL https:
p y
//9ithub.com/jgarzik/pyminer

https://github.com/minium/Bitcoin-Spec
https://github.com/minium/Bitcoin-Spec
https://github.com/jgarzik/pyminer
https://github.com/jgarzik/pyminer

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 4

cryptocurrencies, pick random numbers to try as the nonce , I will
compare this method to picking sequential numbers and show that
using the correct strategy sequentialy picking numbers yields better
results.

CRYPTOCURRENCY MINING STRATEGIES COMPARISON §

To compare miner hit-rates I simulated a fast and a slow miner as
follows:

const crypto = require('crypto');
module.exports = class Miner {

constructor (baseText, strategy, iteration, name, hashZeroes) {
this.baseText = baseText;
this.strategy = strategy;
this.iteration = iteration;
this.name = name;
this.hashZeroes = hashZeroes;

}
mine() {
const hash = crypto.createHash('sha256"');
let textToTry = "";
if (this.strategy === 'RANDOM') {
textToTry = this.baseText + this.getRandomInt(Number.MAX_SAFE_INTEGER);
} else {
textToTry = this.baseText + this.iteration;
}
hash.update(textToTry);
let ctext = hash.digest('hex');
if (this.checkHash(ctext)) {
return {
hash: this.name,
value: ctext,
iteration: ++this.iteration,
string: textToTry
}
} else {
++this.iteration;
return false;
}
}

checkHash(hash) {
if (hash.substr(0, this.hashZeroes) === this.getComparisonString()) {

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 6

return true

}

return false;

getComparisonString() {
let str = "";
for (let i = 0; 1 < this.hashZeroes; i++) {
str += "0";
}

return str;

getRandomInt(max) {
return Math.floor(Math.random() * Math.floor(max));

CRYPTOCURRENCY MINING STRATEGIES COMPARISON

By calling the Miner class with different arguments I create two
miners. Both miners are called in a loop, the speed difference is sim-
ulated by calling the fast miner more times then the slow miner (in
our simulation the fast miner is ten times faster than the slow miner).

let fastHasher = new Miner(randomMessage, program.fastminer, 0, 'fastHasher', hashZeroes);
let slowHasher = new Miner(randomMessage, program.slowminer, 0, 'slowHasher', hashZeroes);

Testing hits by both miners gives us the tables below. Each row
represent a search for 100 hits (in this example we searched which
number added to a random string will produce a hash beginning
with "000").

npm test -- -z 3 -1 100 -t 8 -f RANDOM -s RANDOM -o result.txt
Meaning of various options:

* -z (number of leading zeroes)

¢ -i (number of iterations)

e -t (number of tests)

e -f (fast miner strategy, defaults to RANDOM)

® -s (slow miner strategy, defaults to SEQUENTIAL)

e -0 (filename to write results to)

Results:

fast miner hits fast miner searches slow miner hits slow miner searches

89 286064 11 3440
84 348266 16 5373
92 352617 8 2381
93 415154 7 2312
92 372840 8 1433
91 338755 9 3880
93 358425 7 1831
5

95 301759 865

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 8

Changing both strategies to sequential:
npm test -- -z 3 -i 100 -t 8 -f SEQUENTIAL -s SEQUENTIAL -o result.txt

Results:

fast miner hits fast miner searches slow miner hits slow miner searches

100 429421 0 0
100 448040 0 0
100 416723 0 0
100 406854 0 0
100 395534 0 0
100 400507 0 0
100 416656 0 0
100 390311 0 0

As we can observe this is a loosing scenario for the slower miner,
because both miners use a sequential search, the faster miner will try
the same combinations as the slower one!

We can overcame this by prefixing all the slow-miner searches
with a random string:

npm test -- -z 3 -1 100 -t 8 -f SEQUENTIAL -s SEQUENTIAL -p 11 -o result.txt

Here we used the option —p 11 to prefix the slower miner with the
number 11, so the slower miner will try the following numbers:
110,111,112,113,114, ...,119,1110, 1111, 1112, ...

Results:

fast miner hits fast miner searches slow miner hits slow miner searches

90 314658 10 2490
90 324937 10 3709
89 351935 11 2770
90 346650 10 2716
91 313221 9 2348
92 387160 8 5483
84 326716 16 4427
90 359529 10 3721

As we can see this enables the slower miner to use a sequential
search strategy!

Why use a sequential search strategy?

To search 10.000.000 hashes using random number strategy our miner
needs 22s on average, if we search using a sequential numbers strat-
egy (simply by incrementing a counter each iteration) we need less
then 17s on average.

CRYPTOCURRENCY MINING STRATEGIES COMPARISON

methond time (ms) average time (ms)

sequential numbers 16601
sequential numbers 16608
sequential numbers 16625
sequential numbers 16628

16615.5
random numbers 21731
random numbers 21841
random numbers 21835
random numbers 22404

21952.8

Will searching a subspace decrease our chances of finding the correct hash
input?

Prefixing our search numbers with some random number does not
change our likelihood of finding the correct input to produce the
desired number of zeroes. The possibility of finding the correct input
depends only on the number of leading zeroes!

The SHA-256 algorithm produces a string, each character of that
string represents a hexadecimal number - which means that each
character has 16 possible values.

If x is our hash input than the chance (P) of it producing the cor-
rect number of leading zeroes (n) is:

1

P=—
16"

(This assumes that the hashing function used gives us an uniform
distribution over integers)

— p— 1

If we solve for n = 3 we get: P = z55¢

Since

we should try 4096 combinations on average, before getting a hash
beginning with 3 zeroes!

9

CRYPTOCURRENCY MINING STRATEGIES COMPARISON

Discussion

Using sequential numbers with a random prefix is a possible strategy
when mining a cryptocurrency. Since generating sequential numbers
is faster then generating pseudo-random numbers - we get a speed
increase - which means we can search for more hashes - improving
our chances of finding the correct hash.

In the case of Bitcoin there are some additional properties that
our random prefix could have to further improve our hashing speed.
Since the hashing algorithm in Bitcoin hashes 512 bit blocks and the
average block size is 1MB we process:

10 % 8
512

~ 15000 blocks

We could use our prefix to fill the last block to full (this is done au-
tomatically by the SHA 256 algorithm), now we can compute all the
static blocks and save the intermediate result (we compute ~ 15000
blocks only once), and then use the stored intermediate result to
compute our final hash (we are only changing the last block).

10

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 11

Appendices

Miner simulator:

The git repository for the simulator can be found here:
https://gitlab.klemenc.io/FRI/kripto

https://gitlab.klemenc.io/FRI/kripto

CRYPTOCURRENCY MINING STRATEGIES COMPARISON

test.js:

const
const
const

program = require('commander');
ss = require('simple-statistics');
pjson = require('./package.json');

const Miner = require('./Miner');

const Writer = require('./Writer');

program
.version(pjson.version)
.option('-z, --zeroes [number]', 'Number of leading zeroes', 'parselnt')
.option('-i, --iterations [number]', 'Number of iterations', 'parselnt')
.option('-t, --tests [number]', 'Number of tests', 'parselnt')
.option('-0, --output [file]', 'Filename to write to')

.option('-p, --padding [value]', 'String to prepend')

.option('-s, --slowminer <strategy>',

'Slow miner strategy, defaults to SEQUENTIAL',

/” (SEQUENTIAL|RANDOM)$/1i, 'SEQUENTIAL')
.option('-f, --fastminer <strategy>',

'"Fast miner strategy, defaults to RANDOM',

/7~ (SEQUENTIAL |RANDOM)$/1i, 'RANDOM')
.parse(process.argv);

console.log('Miner simulation running with:");

console.log(' - slowminer strategy: %j', program.slowminer);
console.log(' - fastminer strategy: %j', program.fastminer);
const hashZeroes = (program.zeroes) ? parselnt(program.zeroes) : 3;

const
const
const
const
const

numberOfIttertations = (program.iterations) ? parseInt(program.iterations) : 100;

number0fTests = (program.tests) ? parselnt(program.tests) : 6;
slowMinerStrategy = (program.slowminer) ? parselnt(program.slowminer)
fastMinerStrategy = (program.fastminer) ? parselnt(program.itterations)

prependString = (program.padding) ? program.padding + '': ;

console.log(' - leading zeroes (difficulty): %d', hashZeroes);

console.log(' - itterations: %d', numberOfIttertations);

// simulate some document - block that we have to mine

function getRandomString() {

var text = ;
var possible = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";

for (var i = 0; i < 15; i++) {

text += possible.charAt(Math.floor(Math.random() * possible.length));

'SEQUENTIAL"';
'RANDOM* ;

12

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 13

return text;

function getRandomInt(max) {
return Math.floor(Math.random() * Math.floor(max));

function searchHash() {
let foundHash = false;
let randomMessage = getRandomString();
let fastHasher = new Miner(randomMessage, program.fastminer, 0, 'fastHasher', hashZeroes);
let slowHasher = new Miner(randomMessage + prependString, program.slowminer, 0, 'slowHasher', hashZero

while (!foundHash) {

if (getRandomInt(2)) {
for (let i = 0; 1 < 10; i++) {
foundHash = fastHasher.mine();
if (foundHash) {
break;

}
if (!foundHash) {
foundHash = slowHasher.mine();
}
} else {
foundHash = slowHasher.mine();
if (!foundHash) {
for (let 1 = 0; i < 10; i++) {
foundHash = fastHasher.mine();
if (foundHash) {
break;

return foundHash;

let results = [];

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 14

let distribution = {};
let slowHits = 0;

let slowSearched = 0;
let fastHits = 0;
let fastSearched = 0;

let latexText = '';

function resetTest() {

slowHits = 0;
slowSearched = 0;
fastHits = 0;
fastSearched = 0;

for (var j = 0; j < numberOfTests; j++) {
for (var i = 0; i < numberOfIttertations; i++) {
let result = searchHash();
results.push(result.iteration);
let lastHashChar = result.value.substr(result.value.length - 1);

if (distribution[lastHashChar] === undefined) {
distribution[lastHashChar] = 1;
} else {
distribution[lastHashChar] += 1;
}
if (result.hash == "fastHasher") {
fastHits++;
fastSearched += result.iteration;
} else {
slowHits++;
slowSearched += result.iteration;
}

latexText += fastHits + " & " + fastSearched + " & " + slowHits + " & " + slowSearched + '\\\\\n';
resetTest()

console.log('\n Results: \n');

let sum = results.reduce(function(a, b) { return a + b; });

let avg = sum / results.length;
console.log(' * average: %j', avg);

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 15

console.log(' * distribution: %j', distribution);

// calculating tTest to check for possible mistakes

let distVals = Object.values(distribution);

let distSum = distVals.reduce(function(a, b) { return a + b; });

let distAvg = distSum / distVals.length;

let tTest = ss.tTest(distVals, (numberOfTests * numberOfIttertations) / 16);
console.log(' * tTest of distribution: %j', tTest);

if (program.output) {
const writer = new Writer(program.output, latexText);
writer.write();

Miner.js:

const crypto
module.expor
construc

this

this.
this.
this.

mine() {
cons

let

if (

} el

hash
let

CRYPTOCURRENCY MINING STRATEGIES COMPARISON

= require('crypto');

ts = class Miner {

tor (baseText, strategy, iteration, name, hashZeroes) {
this.

baseText = baseText;
.strategy = strategy;
iteration = iteration;
name = name;

hashZeroes = hashZeroes;

t hash = crypto.createHash('sha256"');

textToTry = "";

this.strategy === 'RANDOM') {

textToTry = this.baseText + this.getRandomInt(Number.MAX_SAFE_INTEGER);

se {

textToTry = this.baseText + this.iteration;

.update(textToTry);
ctext = hash.digest('hex");

if (this.checkHash(ctext)) {

return {
hash: this.name,
value: ctext,
iteration: ++this.iteration,
string: textToTry
}

} else {
++this.iteration;

return false;

checkHash(hash) {

if (hash.substr(0, this.hashZeroes) === this.getComparisonString()) {

return true

16

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 17

return false;

getComparisonString() {
let str = "";
for (let i = 0; i < this.hashZeroes; i++) {
str += "0";

}

return str;

getRandomInt(max) {
return Math.floor(Math.random() * Math.floor(max));

}

Nodejs is required, to install dependencies run:

npm install

CRYPTOCURRENCY MINING STRATEGIES COMPARISON 18

References

Jeff Garzik. Pyminer. URL https://github.com/jgarzik/pyminer.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
November 2008. URL https://bitcoin.org/bitcoin.pdf.

Krzysztof Okupski. Bitcoin developer reference. URL https:
//github.com/minium/Bitcoin-Spec.

https://github.com/jgarzik/pyminer
https://bitcoin.org/bitcoin.pdf
https://github.com/minium/Bitcoin-Spec
https://github.com/minium/Bitcoin-Spec

	Abstract
	Introduction
	Cryptocurencies
	Communal ledger
	Can we ensure that a slower miner will have a hit rate > 0 ?
	Discussion
	Appendices
	Miner simulator:

