
Floyd’s Algorithm

Mirjam Skobe

University of Ljubljana, Faculty of Computer and Information Science

August, 2018

Abstract

This is a paper about Floyd’s Algorithm for detecting collisions or cycles
in a sequence. In the paper, we provide a description of the algorithm
and its use in modern cryptography. We also look at some other cycle
detecting algorithms that have been proven to work a lot faster than
Floyd’s Algorithm.

1 Introduction

In computer science, cycle detection or cycle finding is the algorithmic prob-
lem of detecting periodicity in sequences produced by repeated application of
a given function. In other words, we are looking for collisions in a sequence.
A collision is a pair of elements x, y ∈ D where x 6= y and f(x) = f(y).

The sequence {yi} is defined as yi = f(yi−1) for all i ≥ 1 with function
f : D → D and an initial element y0 ∈ D. If D is finite, this sequence
must eventually become periodic. Then there exist unique µ and λ such
that y0, . . . , yµ+λ−1 are all distinct, but yi = yi−λ for all i ≥ µ. The index
µ is defined as the smallest index such that the value yµ reappears within
the sequence {yi} and λ is the loop length. The elements y0, . . . , yµ−1 form
the prefix of the sequence, and the elements yµ, . . . , yµ+λ−1 constitute the
elements on its cycle. The cycle detection problem asks to find a pair of
elements yi = yj for which i 6= j, and possibly also finding the cycle length
λ [4].
Cycle detection arises in a number of situations [5]:

• in studying the behavior of random number generators,

• in searching for function collisions. A greedy way to find a collision
is to repeatedly apply function f starting from some initial value x0,
and find the cycle length λ of the resulting sequence. Then, using the
knowledge of λ, we can reconstruct the collision pair xµ−1, xµ+λ−1.
But this approach is often inefficient. Finding collisions has several
cryptanalytic applications.

1



• in order to detect when, say, a cellular automaton configuration has
become periodic,

• in Pollard ρ-method for factorization and discrete logarithms.

One of the most well-known cycle detection algorithms is the Floyd’s
Algorithm.

The rest of this paper is organized as follows: In Section 2 we present
the Floyd’s Algorithm. In Section 3 we look at the use of the Floyd’s Al-
gorithm, mainly focusing on Pollard ρ-method and its modification using
the algorithm and in Section 4, we look at some alternative cycle detection
algorithms.

2 Floyd’s Algorithm

Floyd’s cycle finding algorithm [6, 3, 7] is defined as follows: given a sequence
{yi}, find the smallest index j for which:

yj = y2j , 1 < j ≤ µ+ λ

where µ is defined as the smallest index such that the value yµ reappears
within the sequence {yi} and λ is the loop length. This is done by calculating
elements of both sequences {yi} and {y2i} at every step of the algorithm and
comparing current elements yi and y2i. If the above relation is not valid for
the current pair of elements (yi, y2i) we calculate the next pair (yi+1, y2i+2)
with yi+1 = f(yi) and y2i+2 = f(f(y2i)) and compare them using the equa-
tion. This procedure is repeated until we find a pair of elements for which
the above equation is valid. The pseudocode of the Floyd’s algorithm is
presented in Algorithm 1. The number j is the result of Floyd’s algorithm
and is called Floyd’s index.

A more informal definition of Floyd’s collision finding algorithm [7] would
be the following. Keep two pointers and run one of them at normal speed
and the other one at double speed until they collide.

3 Use of Floyd’s Algorithm

3.1 Pollard ρ-method

The Pollard ρ-method [6, 1] is currently the best and quickest method for
solving the discrete logarithm problem on elliptic curves. Let D be a finite
nonempty set. The Pollard ρ-method can be described as a method based
on picking elements from set D until the collision is found. Let {yi} denote
the sequence whose elements are stored in a table. At step j of this method,
we pick an element yj and check if this element is already in our table if
it is then we have found a collision and we stop the procedure. Otherwise,

2



Algorithm 1 Floyd’s algorithm

Data: Finite set D, seed y0 ∈ D and function f : D → D that recursively
defines sequence {yi}.
Result: The smallest index j, for which yj = y2j .
y := y0
z := y0
j := 0
while j 6= z do
j := j + 1
y := f(y)
z := f(f(z))

end while

return j

this element is added to the table. This is repeated until we find a collision.
Because the set D is finite a collision always occurs. The numbers i and j
are the indices of collision of sequence {yi}, where yi = yj , and the number
j is called Pollard’s index. The sequence {yi} generated with the Pollard
ρ-method is called Pollard’s sequence. For this method to work, we have to
define the first element of the method, y0 ∈ D and some function f : D → D
to calculate elements of the Pollard’s sequence, yi+1 = f(yi); i ≥ 0.
Because the elements of Pollard’s sequences get stored in a table, the space
complexity of this method grows with the length of the sequence. To reduce
the space complexity we can use a cycle finding algorithm to find collisions
in a sequence. If we use Floyd’s algorithm to find a collision in Pollard
ρ-method then we call this new method the Pollard-Floyd ρ-method.

3.2 Other Uses

Floyd’s algorithm also has other very useful applications:

• it can be used to determine the strength of the pseudorandom number
generator by calculating its cycle length,

• in cryptographic applications, the ability to find two distinct values
xµ−1 and xλ+µ−1 mapped by some cryptographic function f to the
same value xµ may indicate a weakness in f ,

• a cycle detection may be useful as a way of discovering infinite looping
in certain types of computer programs.

3



4 Other Cycle Finding Algorithms

4.1 Brent’s Algorithm

Richard P. Brent [6, 2] is an Australian mathematician and computer sci-
entist. In 1980 he published an algorithm for detecting cycles, which may
work a lot faster than Floyd’s algorithm.

Let D be a finite nonempty set, {yi} a sequence and e ≥ 1. In Brent’s
Algorithm we calculate the sequence {yi} with recursion yi+1 = f(yi) for
i ≥ 1, where f : D → D is an iterative function and y0 ∈ D is a seed. Brent’s
algorithm is defined as follows: find the smallest number j for which:

y2e−1−1 = yj , j = 2e−1 + `λ− 1 ≤ 2e − 1,

where λ is the period of the sequence {yi}, ` is the smallest number for
which `λ ≥ 2e−2 + 1 and e > 1. This is done by memorizing each element
with index 2e − 1 and comparing the element y2e−1 with elements y2e+k−1

for all 2e−1 < k ≤ 2k. If we found a collision then

y2e−1 6= y2e+k−1

for all k ∈ {2e−1 + 1, 2e−1 + 2, . . . , 2e}, and y2e+1−1 is the last calculated
element. Now we do not need the element y2e−1 and we replace it with the
element y2e+1−1, which we use for comparison with elements y2e+1+k−1 for
2e < k ≤ 2e+1. The procedure is repeated until we find a collision. The
pseudocode for the algorithm is presented in Algorithm 2. The returned
number j of the algorithm is called Brent’s index and the returned value i
of the algorithm is some power of the number two reduced by one, which
is the index of the element currently in memory when Bren’s algorithm
finishes.

Brent showed in his paper that his algorithm is always better than
Floyd’s, both on average and in worst case performance. In particular,
Floyd’s algorithm is expected to find a cycle after ∼= 3.0924 function eval-
uations, whereas Brent’s algorithm is expected to take only ∼= 1.9828 func-
tion evaluations [4], so Brent’s algorithm works on average 36% faster than
Floyd’s.

As with Floyd’s Algorithm, Brent’s Algorithm can also be used to find
a collision in Pollard ρ-method.

4



Algorithm 2 Brent’s algorithm

Data: Finite nonempty set D, seed y0 ∈ D and iterative function f :
D → D that recursively defines sequence {yi}.
Result: Numbers i and j, where i 6= j and for which yi = yj .
y := y0
fy := f(y0)
power := i := 1
while y != fy do
if power == i then
y := fy
power := power * 2
i := 0

end if
fy := f(fy)
i := i+ 1

end while
j := 0
f := fy := y0
while i > 0 do
fy := f(fy)
i = i− 1

end while
while y != fy do
y := f(y)
fy := f(fy)
j = j + 1

end while

return i, j

4.2 Nivasch’s Algorithm

In 2004 Gabriel Nivasch published a paper [5] in which he describes a new
algorithm for finding a cycle by using a stack. We should keep in mind that
a stack is an abstract data type, which is a collection of elements together
with two major operations. The first operation is adding an element to
the stack, and the second is removing the most recently added element still
present in the stack.

The algorithm proceeds as follows. Record a stack of pairs (yi, i) where
both the yi and i form is strictly increasing sequences at all times. This
stack is initially empty, and for each step j, we remove from the stack all
entries (yi, i) where yi > yj . If yi = yj is found, we are done, and we have
recovered the cycle length, in that λ = j − i. Otherwise, move (yj , j) to the

5



top of the stack, and perform the next step. The pseudocode for Nivasch’s
Algorithm is presented in Algorithm 3.

Algorithm 3 Nivasch’s algorithm

Data: Finite nonempty set D, seed y0 ∈ D and iterative function f :
D → D that recursively defines sequence {yi}.
Result: numbers i and j, where i 6= j and for which yi = yj .
create stack s which contains pairs (element, index)
y := y0
j := −1
while true do

if j ≥ 0 then
find smallest t ≤ j such that element(s, t) ≥ y

else
t := −1

end if
if t 6= −1 and element(s, t) = y then

break
end if
i := i+ 1
j := t+ 1
if j > size(s) then

resize s
end if
put (y, i) into s
y := f(y)

end while

return i, j = index(s, t)

The Nivasch’s Stack Algorithm runs in linear time, since the running
time of each step is proportional to the number of elements removed from
the stack at that step, and each element is removed at most once. It uses
logarithmic space and is guaranteed to stop within the second repetition of
the sequence’s cycle, regardless of its size.

4.3 Compare and Adjust Algorithm

The last algorithm for detecting cycles we are going to look at is the Compare
and Adjust Algorithm [6].

The algorithm works as follows. We have a finite noneempty set D, a
Pollards sequence yi where yk ∈ D and indeces µ and λ where µ is defined as
the smallest index such that the value yµ reappears infinitely often within
the sequence and λ is the loop length. Then yσ+λ = yσ is a collision in

6



the sequence yi for σ ∈ N and σ ≥ µ. Let v ∈ N be the smallest number
for which µ + λ ≤ vµ. Then σ + λ ≤ vσ for every σ ≥ µ. Therefor, if we
remember the element yσ ∈ yi and we compare it to elements yσ+1, yσ+2, . . .,
then we find collision yσ+λ = yσ where µ ≤ σ < σ+λ ≤ vσ. The pseudocode
of the algorithm is presented in Algorithm 4.

Algorithm 4 Compare and Adjust

Data: Finite nonempty set D, seed y0 ∈ D, iterative function f : D → D
that recursively defines sequence {yi} and empty table Z.
Result: Numbers i and j, where i 6= j and for which yi = yj .
y := y0
j := 0
i := 0
end := false
σ1 := 0, . . . , σt := 0 //t is the number of elements in the memory
Z[σ1] := y0, . . . , Z[σt] := y0
while end != true do
j = j + 1
y := f(y)
if y = Z[σs] for some σs where s ∈ {1, . . . , t} then
i := σs
end := true

end if
if j ≥ vσ1 then
Z[σ1] := Z[σ2], . . . , Z[σt−1] := Z[σt]
Z[σt] = y
σ1 := σ2, . . . , σt−1 := σt
σt := j

end if
end while

return i, j

5 Conclusion

Even though it has been over 50 years since Floyd’s algorithm was first
published, the algorithm is still very useful in many scientific fields. It was
a base for many modern cycles finding algorithms, which only improved
its performance but did not drastically change the algorithm. Not much
research has been done on the subject of finding cycles so there are not
that many useful algorithms for performing this task. Most of the research
focuses on using these algorithms and not developing them. I think that

7



for now, we are satisfied with the performance of algorithms such as Floyd’s
and Brent’s cycle-finding algorithm and are now looking more into their
application instead of improvement.

References

[1] S. BAI , R.P. BRENT On the efficiency of Pollard’s ρ method for discrete
logarithms. Proceedings of the fourteenth symposium on Computing: the
Australasian theory, January 01-01, 2008, Wollongong, NSW, Australia

[2] R.P. BRENT An improved Monte Carlo factorization algorithm. BIT
Numerical Mathematics, 1980, Volume 20, Number 2, p. 176.

[3] D. KNUTH. The art of computer programming, Volume 2: Seminumer-
ical algorithms. Reading, Massachusetts, Addison-Wesley, 1969.

[4] J. MURPHY Factorization and Collision Algorithms in Algebraic Cryp-
tography. A master’s thesis in Mathematics. Wesleyan University, Con-
necticut. 2017.

[5] G. NIVASCH Cycle Detection Using a Stack. Information Processing
Letters, 2004, 90(3), p. 135–140.

[6] E. SCHLEGEL. Pollardova ρ-metoda. A master’s thesis. University of
Ljubljana, Faculty of Mathematics and Physics. 2003.

[7] A. SHAMIR Random graphs in cryptography. Lecture at
The Weizmann Institute Israel. June 28, 2010. The Onas-
sis Foundation Science Lecture Series. Retrieved from:
http://www.forth.gr/onassis/lectures/pdf/Random Graphs in
Cryptography Onassis Foundation.pdf
Viewed on: January 16, 2018.

8


