
Jan Šubelj Anonymity with onion routing and Tor

1

Anonymity with onion routing and Tor

Jan Šubelj

University of Ljubljana
Faculty of Computer and Information Science
E-mail: js3445@student.uni-lj.si

Abstract. Today, the onion routing service is one of the most used anonymizer services. Readers

would usually associate Tor with illegal activities but in reality, as much as 95 % of the Tor

network is used for normal day to day operations. This article grants the reader an in-depth

overview of the onion routing protocol and its implementation in Tor. I will also touch on the

implementation of hidden services in Tor and some attacks on Tor.

Keywords: Onion routing, Tor, Anonymity, Security

Anonimnost s čebulnim usmerjanjem in Tor

Storitev čebulnega usmerjanja, ki je implementirana v Tor-u, je trenutno ena izmed najbolj

uporabljenih storitev anonimizacije. Čeprav veliko bralcev asociira Tor z ilegalnimi aktivnostmi,

v resnici 95 % uporabnikov Tor uporablja za normalne vsakodnevne aktivnosti. Ta članek

omogoča bralcu pregled čebulnega usmerjanja in implementacijo v Tor-u. Dotaknil se bom tudi

implementacije skritih storitev v Tor-u in par napadov na Tor.

1 INTRODUCTION

We are bombarded with information about governments tracking our every online move on a daily

basis. Nowadays, almost every company tracks both the online and social media activity of their

employees, especially in the workplace. It is not unheard of for employees being fired because

their political views differ from that of the leadership [1]. Therefore, more and more people are

looking for ways to stay truly anonymous on the internet. The solution: anonymity providing

services. One of the most used anonymity providing service is Tor (The Onion Router), which is

based on the onion routing protocol. In this article, I will cover onion routing as described in [2]

and how is it implemented in Tor. I will also cover hidden services in Tor and some attacks on

Tor.

2 ONION ROUTING PROTOCOL (ORP)

In this chapter, I will cover the onion routing protocol as described in the article Anonymous

Connections and Onion Routing from Naval Research Laboratory [2].

The first part of the Onion routing protocol is establishing a connection. Instead of sockets making

connections to the resource provider directly, Onion routing makes a connection to the service

through several special types of routers called Onion routers (OR). These routers are located

throughout the world and in essence work as proxies.

 The other part of the protocol is hiding information in an envelope kind-of way. This is done

through layers of encryption, which is where the ORP gets its name from.

Jan Šubelj Anonymity with onion routing and Tor

2

2.1 Protocol entities

For reader to understand the ORP, we first have to define entities through which the data stream

is anonymized. I will start with the innermost interface, the application proxy.

2.1.1 Application proxy

Connection between the application proxy and an application wanting to use the onion routing

network is application specific. Connection between the application proxy and the onion proxy is

defined as follows. When the application proxy receives data to be sent via the onion network it

first checks whether it supports the needed protocol, if not, it returns an error to the application. If

it supports the protocol, it sends the standard structure to the onion proxy with regard to the

following data:

- version of the onion routing protocol (1 B)

- the transmission protocol (e. g. STMP, HTTP etc.) (1 B)

- the retry count which states how many times the end node should retry connecting with the

ultimate destination (1 B)

- the type of address format that will be forwarded to the onion proxy (1 B)

After this standard structure, the IP address and port number are sent in the format specified in

the last field. Application proxy then waits for a 1-byte error code before sending the data to the

onion proxy.

2.1.2 Onion proxy

Receiving the standard structure from the application proxy, the onion proxy can decide to accept

or reject data. Its decision is sent to the application proxy with a 1-byte error code. If the request

is accepted, it starts to build a packet called onion that is used to build the onion routing circuit.

Each layer of an onion is encrypted with a public key of a receiving onion router. In an onion layer

there is data for the receiving onion router regarding information concerning data exchange. More

information about onions and onion routers is provided below.

2.1.3 Onion router

Like with proxies the onion routers forward data, however, in the onion routing protocol they also

encrypt or decrypt received data. We could view the onion routing network as chaining proxies

with additional cryptographic functions.

 When an onion router joins the network, it contacts its neighbors and exchanges long lasting

keys with them. The onion routers are identified by an IP and port number, so that a single machine

could run multiple instances of an onion router. In order to exchange keys with a neighboring

onion router, an initiating onion router sends its IP and port number to the neighbor to identify

itself. The key exchange phase begins with Station-To-Station key agreement which generates two

56-bit DES keys. Communication between onion routers is then done with DES in OFB mode with

IV set to 0.

 Onion routers communicate with each other through packets called cells. Cells have a fixed

length. Its head includes information regarding the anonymous connection identifier (ACI), type

of cell and data length. Body of the cell carries the payload. There are four types of cells in onion

routing (PADDING, CREATE, DATA, DESTROY). ACI and command fields are always

Jan Šubelj Anonymity with onion routing and Tor

3

encrypted with the key agreed between the neighboring onion routers. The length and payload

fields are encrypted with that key if cells are of type DESTROY or PADDING. However, if the

cell is of type CREATE then only the length field is encrypted with the previously mentioned key.

Each onion router also randomly reorders cells received in a fixed time frame, so that it makes it

difficult for data analysis to break anonymity. The order of data for each anonymous connection

is preserved.

2.1.3.1 Types of cells

 The padding cell is used to inject confusion for data analysis into a longstanding communication

and is dropped on receipt.

 The create cell is used for receiving and transmitting onions through the network. When an onion

is received, the onion router decrypts the onion’s first 128 bytes with its private key, checks that it

is not expired or replayed, and then generates the required keys, incoming and outgoing crypto

engines and generates a new ACI for the next router. It stores the incoming crypto engine and key

under the received ACI and the outgoing crypto engine and key under the generated ACI for the

next router. It also maps the two ACIs together so that it knows where to forward the incoming

and outgoing data. Then the onion router decrypts the rest of the onion with the first generated

key, randomly pads it to the original length, puts it into the create cell and then forwards it on to

the next onion router. Key generation and specific details about onions are described in subchapter

2.1.4.

 The data cell is used to relay data between an onion proxy and the service. If the data cell

received by the onion router is sent in the direction from the onion proxy to the end address, it is

decrypted with the crypto engine and key initialized with the onion that created the circuit. If the

data is sent from the end address to the onion proxy, it is encrypted with the crypto engine and key

initialized with the onion. The onion router does not actually need to know the way data is sent,

because the crypto engine, the key and the forwarding ACI are stored under the ACI set by the

onion. Therefore, in reality, when the onion router receives a data cell, it looks up the cell’s ACI

and uses its associated crypto engine with the key on its payload and length. It then forwards it on

to the associated router (looks up the forwarding ACI).

 The destroy cell is used to break the anonymous connection. When the cell is received, the onion

router must send the destroy cell to the forwarding address of the designated ACI. When it receives

the confirmation that the connection was destroyed, it also purges the data under the designated

ACI and sends the confirmation to the sender. From that point on it can use that ACI for other

anonymous connections.

2.1.4 Onion

Onions are used to create circuits. An onion has multiple layers. Each layer includes the

transmitting and receiving information for an onion router in the circuit. Picture 1 shows what data

an onion layer includes.

Jan Šubelj Anonymity with onion routing and Tor

4

Picture 1: Structure of a layer of an onion

 For an onion to be created, the onion proxy must first choose onion routers (at least three) with

which it will build the circuit. Data regarding onion routers and their public keys is stored in a

public table. The onion proxy then creates a layer for each onion router. In the layer, it stores a

value that denotes the cryptographic function for data moving from it (Forw F) and towards it

(Back F). It then stores the next node destination address and port number. The rest of the onion

will be forwarded to that address which will be used by the onion router to forward and receive

data. If the IP and port number are set to zero, it means that the receiving onion router is last in the

circuit and its job is to relay data to the ultimate destination with the specified protocol. Then the

expiration date is set. In the last field, the random key seed material is set.

2.1.4.1 Key derivation

Keys are derived from the key seed material. Each onion router needs two keys in order to relay

data. For relaying an onion additional key must be used. The three keys are derived from hashing

the seed three times. The first hash (key1) is used for encrypting and decrypting the rest of an

onion, the second hash (key2) is used for a key to encrypt data before sending it back to the onion

proxy. The third hash (key3) is used to decrypt data before forwarding it to the next onion router.

2.1.4.2 Onion creation

To create an onion, we must know the public key of an onion router and its successor in a circuit.

First, we create a layer for the outermost router. We generate the required structure of an onion

layer and set the destination IP address and port number to zero. Then we pad the onion layer with

100 bytes (this is done only to the layer for the end node). We then encrypt the layer with the

public key of the end node. It must be noted that the first bit of an onion is always set to zero, to

enforce that the value encrypted is always numerically lower than the modulus of the public key

encryption.

 Now that we have the initial onion (first layer) we add other layers. For each onion router we

generate a layer and set the IP address and port to the address and port of the routers successor.

We then take the first 100 bytes of the already existing onion and append them to the generated

layer. We then encrypt the layer and appended data with the public key of the onion router for

which that layer is intended. We encrypt the remainder of an onion with the first key (key1) of the

generated layer. Encrypted onion with two layers can be seen in Picture 2.

Jan Šubelj Anonymity with onion routing and Tor

5

Picture 2: Encrypted two layer onion

2.2 Basic example

I will try to provide the reader with a basic understanding of how the onion protocol works through

a simple example.

2.2.1 Initial step

Let us say we want to send message m from A to B. First the onion service initializes a route (also

called a circuit) of onion routers. The circuit should always have at least three onion routers in it

to provide anonymity. The addresses of onion routers are stored in a publicly accessible table.

In this example, A chooses three onion routers denoted:

- End onion router (EN_OR)

- Middle onion router (M_OR)

- Entry onion router (ENT_OR)

A then generates an onion as is presented in 2.1.4.2 and sends it to ENT_OR.

2.2.2 Creating circuit

When ENT_OR receives an onion, it decrypts its layer and initializes the required fields as

described in 2.1.3.1 (create cell). It then decrypts the rest of the onion with key1 derived from its

key seed layer, pads it to the original size and forwards it on to M_OR. M_OR does the same and

forwards the last layer of the onion to EN_OR. EN_OR processes the remaining layer and waits

for data. When the onion is processed, A sends the standard structure, described in 2.1.1, to EN_OR

via the created circuit. This data is already encrypted with the keys derived from the key seed.

Now the EN_OR knows with what protocol and to what address and port (B) should it forward the

data received from the built circuit.

Jan Šubelj Anonymity with onion routing and Tor

6

2.2.3 Sending a message

To send a message, A must first encrypt the data with the key3 of EN_OR then with key3 of M_OR

and lastly with key3 of ENT_OR. It sends the data to the ENT_OR which decrypts it with key3

stored under the cells ACI and forwards it on to M_OR. It does the same and forwards it to EN_OR.

EN_OR then does the last decryption with its key3 and blindly sends the data to B using the

protocol specified when the circuit was created.

2.2.4 Responding to a message

When responding to a message, the process goes in reverse. B sends a response to EN_OR. EN_OR

then packages the response into a data cell and encrypts it with key2. It forwards it on to M_OR

which does the same and forwards it on to ENT_OR. ENT_OR also encrypts the received cell with

key2 and forwards it to A. A must then decrypt the cell with key2 of ENT_OR, then key2 of M_OR

and lastly with key2 of EN_OR. The message is sent to the application interface in the specified

protocol.

2.3 Dangers

The original protocol lacks integrity due to the fact that the attacker could change the cipher text

for malicious intent. The user must also be aware that when using the onion routing service his

identity could still be extracted from metadata. Applications could add public IP, email or other

identifying data to metadata of a message which could then be extracted to identify the user. This

could prove to be a problem if the user does not want to be identified by the server to which he is

connecting. The overall connection through the network is still anonymous as long as the user first

encrypts the data and then sends it to the onion routing service.

3 IMPLEMENTATION OF ONION ROUTING IN TOR

The onion router is an implementation of the onion routing protocol, however, it differs in order

to avoid copyright and patent stealing. Tor actually improved the onion routing protocol and is

known as the second generation of onion routing. In this chapter, I will talk about the differences

between the first and second generation of ORP as described in [3].

3.1 Network design

In Tor, the onion routers no longer only have shared keys with its neighbors but the whole network

is connected with a TLS connection which improves the integrity of cells that traverse the network.

The TLS connection is done with ephemeral keys which guaranty the perfect forward secrecy. Tor

also implements stronger cryptographic functions like AES in CTR mode instead of DES in OFB

mode and agreed upon session keys between onion routers and end user with elliptic curve Diffie

Hellman.

3.2 Just cells

Tor no longer has a special packet called onion for circuit creation. Instead, they extended the types

of cells into two categories: control and relay. They also renamed anonymous connection identifier

(ACI) to CircID for ease of understanding.

Jan Šubelj Anonymity with onion routing and Tor

7

3.2.1 Control cells

The control cells are always processed by the onion router that receives them. They are used for

creation and destruction of a circuit. The control cells keep the same layout as cells in original

ORP. Commands of the control cells are: padding, create, created and destroy.

3.2.2 Relay cells

The relay cells are used for transporting the control cells or data to the next hop in the circuit.

Header of the relay cell is also extended with additional fields. The whole relay cell is shown in

Picture 3.

Picture 3: Relay cell

Because Tor uses the same TCP stream for many circuits, the StreamID is required to identify to

what stream the cell belongs to. The digest field is used for digest and is encrypted along with Len,

CMD and data. When a node gets the relay cell, it decrypts it and checks for digest. If digest is

correct, then that node processes the cell otherwise it forwards the cell to the next node. If there is

no node to forward the cell to, it issues the teardown of a circuit because there could be a man in

the middle trying to change cells.

3.2.2.1 Types of relay cells

There are 11 commands for relay cells. We can seperate them by categorys.

 In the data relaying category there are: relay begin, relay connected, relay data, relay end and

relay teardown. When relay begin cell is issued it means that the receaving node must connect to

the web service with the address and protocol specified in the data field. Relay connected is issued

when a node has succesfully connected to the service. Relay data is the most used relay cell and is

ment to relay data between the web service and end user through the onion routing network. Relay

end and relay teardown are similar commands. Both are used for closing and breaking down a

circuit. Relay end is used to correctly close down the working circuit whilst relay teardown is used

if the digest of a message does not match or if there are other problems on the circuit.

 The control category has following relay cells: relay extend, relay extended, relay truncate, relay

truncated, relay sendme and relay drop. Relay extend and relay extended are used to issue a

command to extend the circuit by one node with the onion router specified in the data field. Relay

truncate and relay truncated are used to teardown one part of the circuit and to confirm the

teardown. Relay sendme is used in congestion control. Relay drop is used for implamentation of

long range dummies.

3.3 Basic example

Because of the difference between Tor and the original ORP, I will try to provide the reader with

a basic example of how Tor communication works. For a more visual reader, I also provided a

picture of a simplified communication as seen on Picture 4. I will try to provide the reader with a

basic understanding of how Tor works through a simple example. It must be stated that in reality

Jan Šubelj Anonymity with onion routing and Tor

8

there are two keys for forward (key1) and backward (key2) communication as there are in the

original ORP.

Picture 4: Simplyfied Tor connection

3.3.1 Initial step

Let us say we want to send message m from A to B. First A chooses an entry OR (OR1), preferably

a trusted one, and agrees on a session key. Then A sends a message to OR1 to extend the circuit

with another OR (OR2). With it, A also agrees on a shared secret, but this time OR2 doesn’t know

who A is because the message is relayed through OR1. Repeating this step, A sets up a circuit of

N ORs and has N session keys for every OR in the circuit.

3.3.2 Sending a message

When the circuit is built, A encrypts the data with the Nth key then N-1th key and so on until all

session keys are used. The encrypted message is then sent to OR1 which decrypts the message

with his session key and forwards it to OR2. This process goes on until the last OR (Nth OR) gets

the message, decrypts it, and processes it or, in this case, forwards it to B.

3.3.3 Responding to a message

When responding to a message the process goes in reverse. B sends a response to ORN. ORN then

encrypts the replied data with its session key and forwards it to the N-1 OR. The latter also encrypts

data with its session key and forwards it on. This process goes on until A gets the encrypted data.

A then decrypts it in the correct order.

3.4 Integrity checks

One of the biggest problems of the original ORP is that it has no integrity check. This was corrected

in Tor. They implemented an end to end integrity check which I already mentioned in 3.2.2.

Jan Šubelj Anonymity with onion routing and Tor

9

 For a better understanding, I will use the example from 3.3. To generate a message integrity

code (MIC), A must take the agreed upon key with the last onion router in the circuit, ORN. It then

appends the message to the key and hash it. The hash is then put into the digest part of the relay

cell. Before A sends the cell, it encrypts it multiple times as stated above. The message is then sent

and decrypted node by node. Each node checks the digest value and if it matches then that means

that it is the last node in the circuit and that it should process the message. If the digest is incorrect

and node has no forwarding address then that node issues a teardown cell. For stronger security,

each new message is appended to previously sent messages before hashing. In order for the attacker

to generate an authentic MIC, he has to know all of the messages sent including the shared key.

Integrity check is done in both directions with different keys. For MIC from end user to service

the key1 is used and for MIC from service to end user the key2 is used. Hashing is done with

SHA1. Hash length extension attack in this case does not work because whole hash is encrypted

when traversing the onion routing network and only the end user and end node have the decrypted

value of a hash.

4 HIDDEN SERVICES

When a user wants to put up a service (e. g. a web server) and does not want anyone to know its

location (reveal an IP address), the current set up does not provide him with anonymity. In the

original ORP only the user was anonymous whilst the IP address of a server was known. To

provide anonymity in both directions the researchers included hidden services into Tor.

 In essence, a hidden service has set up N number of introduction points. These are normal onion

routers and can change (any onion router can be an introduction point). User first chooses an onion

router to work as a rendezvous point. User then relays the data about the rendezvous point to the

hidden service via the introduction point. Then the user builds a circuit to the rendezvous point

and, at the same time, so does the hidden service. When both circuits are built, the communication

between the user and the hidden service can proceed. In this configuration, there are at least 7

onion routers in the circuit. Three from user to the rendezvous point, three from rendezvous point

to the server and one is the rendezvous point.

4.1 Full example

In this subchapter, I will describe the full example of the connection to the hidden service as is

described in the article Tor: The Second-Generation Onion Router [3]. In this example, A denotes

the user that wants to talk to the hidden service, HS denotes the hidden service and RP denotes the

rendezvous point.

4.1.1 Initial work of the hidden service

The hidden service must first generate a long-term RSA keypair with which it identifies itself and

then randomly chooses introduction points. These are normal onion routers with which HS

connects via Tor circuit. They start to act as an introduction point when HS passes them its public

key. HS then creates an onion service descriptor that contains its public key and a summary of

introduction points. The onion service descriptor is then signed with its private key. Descriptor is

then stored in the lookup table and is periodically refreshed. Introduction points now wait for

requests.

Jan Šubelj Anonymity with onion routing and Tor

10

4.1.2 Connecting to a hidden service

For every hidden service a unique domain name is created. Domain name is a 16-character string

derived from the public key of HS (e. g. 3g2upl4pq6kufc4m.onion). A gets the domain name of

HS out of band, via a website or a HS owner tells the domain name to A. Then it retrives

information regarding the introduction points from the lookup table. Afterwards, A randomly

selects an onion router to act as an RP. It builds a circuit to it and gives it a randomly chosen

rendezvous cookie. Cookie is used to identify and link the HS with A. Next, A connects to the

introduction point of a HS, and sends it a message that includes a description of RP, the rendezvous

cookie and the first part of Diffie Hellman key agreement. The whole message is encrypted with a

public key of HS.

 Introduction point then forwards this message to HS. If the HS wants to talk to A, it establishes

a circuit to RP and gives it the rendezvous cookie. The RP connects HS to A, and now HS sends

to A its part of Diffie Hellman and a hash of an agreed upon key. The whole connection is now

secured and A starts the connection with a hidden service with relay begin cell.

5 ATTACKS ON TOR

In this chapter, I will describe a few attacks on Tor in general and attacks on hidden services. Many

attacks exist and there is a constant race in finding an attack and preventing it. It should be said

that Tor is not meant to provide anonymity against an end-to-end attack where an adversary

controls all entry and exit nodes.

5.1 Passive attacks

Passive attacks are eavesdropping attacks where the attacker does not change, discard, replay or

modify the data stream in any way. The attacker has only the power to listen to the stream and

derive conclusions.

5.1.1 Content vulnerability

Tor is not meant to anonymize the data stream itself. It does not change the stream in any way.

Also, it does not provide end-to-end secrecy. Therefore, if a user connects to a service that does

not provide data secrecy (e. g. HTTP), the adversary that listens on the data stream between the

end point and the service, it could gather data about the user. It could steal data sent from user to

the service or the other way around.

 If the user identifies to the server via login or any other identifying data (e. g. home address)

then the eavesdropper could trivially authenticate the user.

 Both of these attacks could be prevented by using end-to-end secrecy like HTTPS. This means

that data is encrypted even before it is sent to the onion proxy and is still encrypted when exiting

the exit node.

5.1.2 Timing correlation

If an adversary could listen between the onion proxy and the first onion router and between the

last onion router and the service, it could correlate the incoming and outgoing packets by timing.

Let us say that the user sends three packets to the service. Time between the first and the second

is 2 ms and between second and third is 3 ms. The adversary sees 3 packets coming from the onion

Jan Šubelj Anonymity with onion routing and Tor

11

proxy with this delay and later (e. g. 500 ms) it sees three packets with almost the same time delay

leaving the end node and being delivered to the server. He can then speculate that these three

packets are the same as the ones leaving the onion proxy. This means the anonymity is broken.

 Even though this attack is possible, it is not necessarily probable because this means that an

attacker would have to listen to a lot of connections all over the world. Note that nodes are picked

at random and that the entry nodes are chosen from a trusted set of onion routers. Additional

protection could be gained by securing the connection from the onion proxy to the first onion

router (e. g. by setting it behind a firewall). The attacker would now have to separate cells

originating from the onion proxy and cells that use the onion proxy as a relay node.

5.2 Active attacks

In an active attack, an adversary can modify traffic, set up its own onion routers, deploy denial of

service attacks etc. These attacks usually need more resources and are generally deployed to

authenticate a specific user.

5.2.1 Chain attack

If an attacker has power to get the session keys from onion routers, it could target every onion

router in the circuit. If an attacker gets all session keys, then it could decrypt all messages and not

only identify the user but also extract data. This could potentially prove to be very harmful for the

user and the service.

 This attack can work only if an attacker can break every single onion router in a circuit which

means that they would have to have legal jurisdiction for all the locations where onion routers are

placed, which could provide quite a challenge. Also, the chain has to be broken before the keys

expire and a new circuit is generated. So, the attacker has 10 minutes (current lifetime of a circuit)

to break every single onion router and get the session keys. This is unlikely to happen because the

timing is quite short and onion routers in a chain are usually located in different countries which

means that the attacker has to have a large amount of (legal) power.

5.2.2 Hostile onion routers

Because anyone could run onion routers the attacker could also run its own onion routers. Attacker

can break the anonymity of a user if he controls the entry and end onion router. If the attacker

controls m of N nodes then he can break the anonymity of maximum (m/N)^2 connections.

 There is no solution for this attack because anyone could run onion routers. To diminish this

attack, Tor runs a service that lists trusted onion routers. Note that it is advised to always use a

trusted entry onion router.

5.2.3 Hostile web service

It is possible for a web service to be hostile (a legit website could be spoofed). It can persuade the

user to input some kind of authentication and authenticate them that way. It is also possible that a

program that is connected to Tor network sends authentication data in the header or metadata.

 This kind of attack can be prevented by using additional programs that filter authentication data

from data stream (e. g. Privoxy) before sending it to Tor network.

Jan Šubelj Anonymity with onion routing and Tor

12

5.3 Attacks on hidden services

One of the greatest features of Tor are hidden services. This is also where most of the “dark web”

lies. I will try to explain some of the attacks on hidden services. Even though attacks on hidden

services are common, there is not yet a known attack that would disrupt hidden services all

together.

5.3.1 Denial of service attacks

These attacks are meant to disrupt a hidden service so that it can no longer serve clients. An attacker

could flood an introduction point with request for a hidden service. These requests could be filtered

or blocked by the introduction point if a hidden service requires an authentication token. Note that

this authentication token is still anonymous in nature because it does not provide any information

about the user, only that he can access the hidden service.

 Another denial of service attack is when an attacker disables introduction points with DDOS

attack or other. This attack can be simply mitigated by a hidden service opening new introduction

points. Also, introduction points do not need to be public and can be known only to those few users

that are authorized to access the hidden service.

5.3.2 Compromised introduction point

If an attacker owns the introduction point of a hidden service it could flood the hidden service to

prevent it from serving the users. This can be easily noticed and a hidden service can close the

circuit and open a new introduction point.

 Another example of an attack could be that an introduction point does not forward user’s request

to a hidden service. In this case, the hidden service must periodically check the introduction point

so that it sends the request as a normal user and then check if it received a request.

 Both of these attacks could be mitigated by opening multiple introduction points so even if one

is compromised the chances of others being as well are quite slim.

5.3.3 Compromised rendezvous point

Because the rendezvous point is a normal onion router, an attacker does not gain anything if it

controls only the rendezvous point. All the data relayed by the rendezvous point is encrypted by

the session key agreed upon between the hidden service and the user so that an attacker cannot

read the data stream nor can he identify the hidden service or the user because both are connected

via a different anonymizing circuit.

6 CONCLUSION

In this article, I tried to provide the reader an in-depth overview of the onion routing protocol and

its implementation in Tor. The attacks described in this article are only the basic attacks and

elaborate attacks on Tor, which are being researched daily. Tor is currently still the most used

anonymizer service and I doubt this will change anytime soon. For those who want to try browsing

the web via Tor they can download the Tor web browser on https://www.torproject.org/. There,

the reader can also access many interesting information about Tor usage and anonymity in general.

For more intrigued readers I would recommend the articles referenced below.

https://www.torproject.org/

Jan Šubelj Anonymity with onion routing and Tor

13

7 REFERENCES

[1] "Google employee fired over diversity row considers legal action" The Guardian. [Online].

Available: https://www.theguardian.com/technology/2017/aug/08/ google-employee-fired-

diversity-row-considers-legal-action-james-damore. [Accessed: 12. 1. 2018].

[2] M. G. Reed, P. F. Syverson and D. M. Goldschlag, "Anonymous connections and onion

routing," in IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 482-494, May

1998.

Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=668972&isnumber=14639

[3] R. Dingledine, N. Mathewson, and P. Syverson. "Tor: The Second-Generation Onion Router"

in Proceedings of the 13th USENIX Security Symposium, pp. 303-320, August 2004. Available:

https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf

[4] R. Dingledine, N. Mathewson, ''Tor Protocol Specification'', Tor Project [Online],

Available: https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt. [Accessed: 12. 1. 2018].

8 PICTURE REFERENCES

[1] M. G. Reed, P. F. Syverson and D. M. Goldschlag, "Anonymous connections and onion

routing," in IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 482-494, May

1998.

[3], [4] R. Dingledine, N. Mathewson, and P. Syverson. "Tor: The Second-Generation Onion

Router" in Proceedings of the 13th USENIX Security Symposium, pp. 303-320, August 2004.

Available: https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf

https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf

