
Pseudo-random number generator in the Linux
kernel

Dejan Benedik

February 7, 2017

1 Introduction
There are many programs, applications and protocols that depend on well cho-
sen random numbers to operate safely. If such numbers are compromised, an
adversary can break the encryption. The "quality" of the random numbers de-
pends on their source — if the generated number sequences can’t be predicted
better than by a random chance, they are considered safe.

The sources of random numbers in computers are either hardware random
number generators or pseudo-random number generators (PRNG). The former
rely on measuring physical sources that are considered random, such as radiation
decay, cosmic background radiation or thermal noise. On the other hand, PRNG
are simply some algorithms that output appearing-to-be random sequences of
numbers based on their own internal state. When the number of different inter-
nal states and outputs is big enough, PRNG is considered a cryptographically
secure random number generator (CSPRNG).

In this work we describe and analyze the PRNG that’s included in the Linux
kernel. First we describe pseudo-random number generators and some criteria
that ensure their safety. In the next chapter, structure of the Linux PRNG is
analyzed in detail. Along with that, we explain some possible vulnerabilities
and their impact. In the fourth chapter, there is an overview of challenges that
arise with usage of PRNG in virtual machines.

2 Pseudo-random number generators
PRNG is an algorithm that takes a binary input sequence of length l and returns
a binary output sequence of length n, where l ≤ n, but usually l << n. It is
deterministic, since for a given input, it will always return the same output. A
PRNG algorithm f can be defined as:

f : {0, 1}l → {0, 1}n

A random number generator is considered secure when there is no polynomial-
time algorithm that would usually return the next RNG output bit, based on

1

its previous output. In more concrete terms, there would have to be an oracle
o : {0, 1}m → {0, 1}, which should predict the m + 1 bit (based on previous m
bits) in more than 1

2 of iterations. When there is no such oracle, PRNGs are
called cryptographically secure pseudo-random number generators (CSPRNG).
Examples include the Blum-Blum-Shub algorithm, Yarrow (which is used for
/dev/random device in UNIX operating systems) and /dev/random in the Linux
kernel.

One might wonder what are the advantages of PRNG as opposed to hardware
random number generators (HRNG). First of all, PRNG usually aren’t faster
and sometimes they rely on hash functions with dubious security, as there is
always a threat that they will be broken. Since HRNG is usually a black box1,
the user must trust both the HRNG implementation and its manufacturer. On
the other hand, the Linux source code is available for anyone to inspect. Another
reason is cost - especially in small embedded devices, adding a HRNG would be
prohibitively expensive, both in size and money. Similar issues affect virtualized
operating systems that run on servers. PRNG also offers reproducibility - for
the given seed, it will always return the same output sequence.

2.1 Criteria for CSPRNG
There are some guidelines for writing cryptographically secure PRNG. First
of all, it should be difficult or impossible to analyze its internal state. If an
adversary could choose the input entropy, it should still be difficult to predict
the PRNG output. The reverse also holds - given some output, an adversary
must not be able to figure out the internal state of RNG. It is recommended that
the source code is publicly available for scrunity and reviews - that way, some
deficiencies and errors can be observed and fixed much sooner. The generator
output should also be statistically tested, existence of any repeated patterns
would imply that a PRNG is bad.

3 Linux PRNG driver
In this section, we explain the inner workings of Linux PRNG driver, first written
in 1994. Instead of symmetric ciphers, the driver primarily used secure hashes
because there were many patents and export restrictions imposed by various
governments at the time of first implementation. Most of following anaysis is
inferred from the source code (which is located in drivers/char/random.c)
with the help of various emails and articles accessible on https://lwn.net/.
There were some structural changes done to the random driver in October 2016,
with version 4.8 of the kernel. As a result, the following description differs
slightly from those in articles [4], [3], [2] and others.

In its essence, the random driver collects randomness (also called entropy)
from various available sources and uses it as a seed for the chosen PRNG func-
tion. The benefit of such approach is the relative simplicity of changing the

1The user can only see the output of HRNG, but not its hardware and software.

2

PRNG function for another one when its performance or safety are not satis-
factory any more.

Figure 1: Simplified structure of Linux PRNG driver

First, we have a look at entropy pools, which hold the current entropy.
Then there is a brief overview of entropy collection, how it’s added to the pools
and how it’s counted to ensure appropriate level of randomness. Last part of
this chapter presents the distinction between /dev/random and /dev/urandom
PRNG devices and where the use of each is appropriate. In short, /dev/random
is blocking, therefore it returns random sequences only when there is enough
entropy.

3.1 Entropy pools
There are 2 main entropy pools in the random driver: input and blocking. Col-
lected entropy gets mixed in to the former one, while the latter is only used for
the blocking /dev/random driver. Their sizes are different - input storage is 27
words (with 32b words, that is 4096 bits) large while blocking is 25 words or
1024 bits large. There used to be an additional entropy pool associated with
/dev/urandom, but it was removed in Linux 4.8.

Each pool has an entropy counter, which keeps track of the available en-
tropy2. When entropy is mixed in or accessed, the counter increases or decreases
accordingly. After new entropy is collected, it gets mixed into the input pool
using a mixing function mix_pool_bytes, which is also used for mixing and
transferring the entropy to the blocking pool.

The function mix_pool_bytes implements a twisted generalized feedback
shift register (TGFSR). In contrast with LSFR, a GSFR uses the XOR operation
with all of the bits from previous state to generate the next state (LSFR uses
only some of the bits). Twisted GFSR additionally scrambles the XOR’d state
by multiplying it with matrix A, in the kernel this is done using a CRC32 hash
function.

xl+n = xl+m ⊕ xlA, (l = 0, 1, . . .)

It is noted in the source that while this function is not cryptographically strong,
it’s very fast and good enough for modifying the entropy pool. Its speed is im-
portant because entropy gets collected and mixed in during interrupt handling.

3.2 Entropy collection
The kernel tries to collect as many good sources of randomness as possible. En-
tropy is collected from various events, such as user input (mouse and keyboard),

2This is important mostly for the /dev/random device.

3

disk activity and interrupts. Except for the interrupts, each event consists of 3
values: a unique event identifier, jiffies, which is a CPU cycle counter that only
increments during interrupt handling, and a general CPU cycle counter.

Interrupts get collected in a separate entropy pool called fast pool. Its con-
tents get mixed in the input pool either every second or every 64 interrupts.

The quality of entropy in the input pool can also be improved by mixing in
output of available hardware random number generators. Since they are usually
black box implementations, the entropy count is not increased.

3.3 Entropy estimation
Entropy estimation for incrementing entropy counters is based on timing dif-
ferences between jiffies of consecutive events. The algorithm first calculates 3
levels of differences, which takes 6 consecutive events:

δ[1]n = jn − jn−1

δ[2]n = δ[1]n − δ
[1]
n−1

δ[3]n = δ[2]n − δ
[2]
n−1

e = log2

(
bmin(|δ[1]n |, |δ[2]n |, |δ[3]n |)c

)
Entropy estimate e is then a logarithm of minimum difference from each

level, rounded down by one bit. Additionally, the logarithm is truncated into
an interval [0, 11]. When the entropy gets mixed into the pool, even if the
estimate is zero, the entropy counter is credited with the calculated value.

Users are allowed to add entropy to the random driver by writing to /dev/random
and /dev/urandom devices. In such case, no entropy is counted to prevent at-
tacks on internal state of PRNG.

3.4 /dev/random, /dev/urandom and get_random_bytes

At last, we can describe the user-facing random devices and the get_random_bytes
system call.

The random device is blocking - it returns output only when there is an
appropriate amount of entropy in the blocking pool. Output is generated by the
following algorithm:

1. Hash all bytes of the blocking pool using SHA-1. If there is less than The
result consists of 5 4-byte words, which is immediately mixed back into the
pool to prevent backtracking attacks (when an adversary knows the state
of the pool and the current outputs, he could attempt finding previous
outputs).

2. The 5 hashed words are then folded using XOR operation to hide any
recognizable pattern:

4

output =
(
w0 ⊕ w3||w1 ⊕ w4||w2[0...15] ⊕ w2[16...31] ||w2[16...31] ||w3||w4

)
Output is 20 bytes large. If the user demands less data, it is truncated, if
more, the procedure executes again. Entropy counter for blocking pool is then
decreased by an appropriate amount.

The urandom device used to be quite similar to the random device - it had its
own non-blocking entropy pool that was used in the same way as the blocking
pool, except that urandom didn’t stop outputting pseudo-random data when
there was not enough entropy. If entropy was available, it was mixed into the
non-blocking pool. Since Linux 4.8, /dev/urandom doesn’t have an entropy pool
and it uses a modified ChaCha20 stream cipher, which is reseeded either every
5 minutes. The seed data comes either from the input pool (if enough entropy
is available) or from the internal state of ChaCha20.

The get_random_bytes syscall exposes the same function that generates
pseudo-random data for /dev/urandom.

Figure 2: Simple overview of Linux PRNG since the version 4.8

In figure 2 is a summary of PRNG driver in the current Linux kernel. Entropy
counters are not shown, as they would overcrowd the figure.

Since it is blocking and as a consequence rather slow, the /dev/random
device is only recommended when randomness is critical for the security of user’s
application and the user can afford to wait - examples include one-time pads and
generation of various long-lived cryptographic keys. The design of this device
comes from a time when cryptographers weren’t exactly sure about the safety of
hash functions. Consequentially, this device operates only on gathered entropy.

5

For this reason, it could be considered a true random number generator. On the
other hand, /dev/urandom is a PRNG and the recommended source of random
numbers for any other use due to its speed.

3.5 Overview of possible vulnerabilities
In this section, we look at some vulnerabilities that might affect the random
driver due to its architecture.

3.5.1 Entropy starvation and denial of service

First issue is related to the non-blocking nature of /dev/urandom - if there is
not enough entropy in the input pool, the ChaCha20 simply gets reseeded with
its own internal state. Draining the input pool is easily done by continuously
reading from /dev/random. As a result, no new randomness is introduced into
the urandom device. Overall this is not a serious issue because an adversary still
has to break the ChaCha20 stream cipher.

There used to be another problem possible in the old /dev/urandom imple-
mentation. When data was read from that device, its non-blocking pool was
reseeded with any available entropy from the input pool. Constant and con-
tinuous accessing of urandom device could therefore drain all entropy from the
input pool. As a result, /dev/random would block indefinitely. This is not
true anymore with the new design, as the ChaCha20 algorithm reseeds only in
predefined intervals of time.

3.5.2 Direct cryptoanalytic attack

The Linux RNG relies on SHA-1 and ChaCha20, either of them would need
to be broken for Linux RNG to be compromised, the former for /dev/random
and the latter for the /dev/urandom device. At least in case of /dev/random,
such attack would be extremely hard to execute due to constant mixing of the
entropy pool.

3.5.3 Low entropy after initialization

When the operating system starts, it executes a sequence of actions that might
be known by an adversary, especially if every action is done automatically. As
a consequence, the internal state of entropy pools might be predictable. In the
end, this is not an issue, because the kernel allows carrying the state of entropy
pools across reboots. As a result, even with knowledge of all startup activities,
an adversary would need to know the history of previous sessions, which is only
possible on an already compromised system.

3.5.4 Entropy collection from rogue device

Another proposed attack could be done by a device that’s able to monitor the
hardware - a USB device, for example, or even a CPU. In the latter case, the

6

CPU knows the state of entropy pools and can therefore contribute malicious
"random" data that alters pool state in a certain way. As a result, the actual
randomness of the entropy pool decreases. This example shows us that we must
(be able to) trust the hardware vendors.

4 Random number generation in virtual environ-
ments

Virtualization technologies allow better utilization of all the available computing
power by running multiple virtual instances on the same hardware. In the
context of (pseudo) random number generation, this presents new challenges.
Virtualized environments often lack many of the key entropy sources, such as
hard drives, keyboards and mouses. Consequentially, entropy is gathered more
slowly, which might impact some applications [2]. Another aspect is the ability
of virtualization host (or provider) to measure and alter the entropy sources,
as discussed in [5]. Lastly, [1] presented a new kind of vulnerability that might
happen when virtual instances are stopped and then started again. Called the
reset vulnerability, it causes multiple virtual machines to have equal RNG state,
which consequentially generate same pseudo-random data.

4.1 Virtualization host influence on RNG
Article [5] analyzes the safety of running virtualized applications on systems,
provided by cloud computing vendors. The authors were able to approximate a
few bits of new entropy mix-ins by observing all sources of entropy. There was
still some randomness involved and after a few iterations of entropy gathering,
the entropy pool was sufficiently scrambled that they couldn’t predict PRNG
output. In the end, they demonstrated that a small reduction of entropy was
possible, but ultimately not enough to break anything.

4.2 RNG performance
As the authors of [2] found out, the rate of entropy generation is on average at
least 1.5 times greater on the host, compared to the virtualized guest system.
It could be problematic if virtualized applications had to use /dev/random ex-
tensively. This isn’t the case, because /dev/urandom, which needs much less
entropy, is the preferred source of pseudo-random data. The impact from host
on guest RNG was minimal, but they found out that the virtualized system
could influence some entropy sources of the host system. Again, even though
some entropy could be controlled by the guest machine, it would be unable to
predict or influence the final state of the PRNG driver.

7

4.3 Reset vulnerability
This is perhaps the most threatening vulnerability, because it happens during
routine management operations of multiple virtual machines. After the execu-
tion of a virtual system is paused and a snapshot3 is made, the operator then
resumes execution. For some time, state of the PRNG will be the same as
it was before the pause. This becomes problematic when for scaling reasons,
multiple instances of the same snapshot are run. They will have same PRNG
state and for some time, they will even output same "random" data. In [1],
the authors managed to demonstrate 3 situations that led to reset vulnerabil-
ities with /dev/urandom. First two problems were related to the non-blocking
entropy pool and were thus solved with its removal in Linux 4.8. The last one
seems obvious - when input pool doesn’t have enough entropy, the algorithm
behind /dev/urandom will reseed by using its internal state. Multiple virtual
instances could then have same PRNG state indefinitely, or as long as there was
not enough entropy in the input pool. The authors then demonstrated reset
vulnerability by creating RSA keys using OpenSSL. The /dev/urandom output
was the same and 2 out of 27 resumed snapshots created identical private keys.
Right now, this seems the most major deficiency in the Linux PRNG.

5 Conclusions
In this article, we defined pseudo-random number generators, reasons for their
usage and some criteria for their safety. Afterwards, we described and briefly
analyzed the details of pseudo-random number generator in the Linux kernel.
We also looked at various aspects of PRNG in virtual environments, where the
biggest threat is the reset vulnerability. Aside from that, there are no other
obvious deficiencies that could be solved by modifying the generator - the rogue
CPU threat can not be solved using software. To conclude, the Linux PRNG
seems safe to use.

References
[1] A. Everspaugh, Y. Zhai, R. Jellinek, T. Ristenpart, and M. Swift. Not-so-

random numbers in virtualized linux and the whirlwind rng. In 2014 IEEE
Symposium on Security and Privacy, pages 559–574, May 2014.

[2] Rashmi Kumari, Mohsen Alimomeni, and Reihaneh Safavi-Naini. Perfor-
mance analysis of linux rng in virtualized environments. In Proceedings of
the 2015 ACM Workshop on Cloud Computing Security Workshop, CCSW
’15, pages 29–39, New York, NY, USA, 2015. ACM.

[3] Ž. Mahkovec. Analiza generatorjev psevdo-naključnih števil v operacijskem
sistemu linux. 2004.

3A snapshot is a copy of the entire state of a virtual machine.

8

[4] D. Munda. Analiza generatorjev psevdo-naključnih števil v operacijskem
sistemu linux. 2008.

[5] Christopher J. Thompson, Ian J. De Silva, Marie D. Manner, Michael T.
Foley, and Paul E. Baxter. Randomness exposed – an attack on hosted
virtual machines.

9

	Introduction
	Pseudo-random number generators
	Criteria for CSPRNG

	Linux PRNG driver
	Entropy pools
	Entropy collection
	Entropy estimation
	/dev/random, /dev/urandom and get_random_bytes
	Overview of possible vulnerabilities
	Entropy starvation and denial of service
	Direct cryptoanalytic attack
	Low entropy after initialization
	Entropy collection from rogue device

	Random number generation in virtual environments
	Virtualization host influence on RNG
	RNG performance
	Reset vulnerability

	Conclusions

