
Frequency Hopping Spread Spectrum
(Wireless Communications)

Blaz Repas

February 7, 2017

Seminar paper, Course: Cryptography and Computer Security

GOALS: Present frequency hopping, it’s potential for securing wireless
communications and show a possible scheme for frequency hopping

Abstract

IoT devices are more and more popular, even more so when they
utilize wireless communications. However these wireless data links
are more often then not unsecured. That leaves the devices prone to
various attacks. One of the DoS attacks is jamming the operating
frequency and thus disabling the communication. Measures should
be taken to prevent such attacks and at the same time make the
communication channel less feasible for eavesdropping.

1 Intro

Wireless communication can be done in many ways. In this paper we will
focus on point-to-point communication between two devices. At any given
time, one of the devices will be the transmitter (Alice) and the other one the
receiver (Bob). Normally this two devices operate at a fixed, predetermined
frequency. Since the frequency is fixed, both devices know where to send
and where to receive. However in this case, a careful eavesdropper (Eve)
can determine the frequency, by scanning the spectrum. When in possession
of this knowledge, Eve can tune to the frequency and receive the data, just
like the valid receiver - Bob. If the data is not encrypted, then Eve can also
determine the contents.

Even if the data is in fact encrypted, there are still malicious attacks
that Eve can do. She can overpower the legitimate transmitter (Alice), and

1

thus makes receiving valid data impossible - she can jam the frequency. This
DoS attack can be prevented if the frequency is unknown to Alice. She can
not disrupt the communication, because she does not know the operating
frequency. However Eve can still find the transmission by means of scanning
if the operating frequency is fixed.

2 Frequency hopping

Now let us consider changing the operating frequency f while transmission
is in effect. If Alice can change f very quickly - in other words hops to a
different frequency, Eve does not have enough time to scan the spectrum and
determine the new frequency. This mostly solves the problem of jamming,
but creates a new problem. Like Eve, Bob also does not know on which
frequency to listen in order to receive the transmission.

Somehow Alice and Bob must know in advance on which frequencies they
will operate at any given time, or be able to use a deterministic calculation
to calculate the next frequency to use. In other words, both need to be able
to produce the same sequence of frequencies in a deterministic fashion. That
is usually done by splitting the usable spectrum space S into channels. Each
channel is given a unique number and a corresponding (center) frequency.
For example we can have, nch = 256 channels

ci ∈ {0, 1, 2, ..., 255}

and usable spectrum space of

S = 4MHz

.
Then each channel is w = 4

256
MHz = 15.6KHz wide and operating

frequency is calculated by the formula

f = f0 + i ∗ w

Then, usually, a pseudo-random number generator (PRNG) is used to
determine the channel number

ci ∈ prng() mod nch

every ten to a few hundred milliseconds. For Alice and Bob to be able to
communicate, they have to share the seed for the PRNG and keep generating
next channel number in a synchronized way.

2

When we keep the next operating frequency hard to guess, we obtain
a jamming resistant scheme. An interesting side-effect of jamming and in-
terference resistance is the fact that multiple transmitters can coexist and
transmit at the same time. This is relied upon in radio control applications,
like for example, flying an RC airplane or quadcopter. Many commercial RC
transmitters employ a similar frequency hopping spread spectrum scheme to
ensure uninterrupted control. This allows multiple RC operators to fly their
contraptions without interfering and loosing control.

2.1 Weaknesses

The goal to combat jamming attacks is achieved by rapidly changing the
frequency. However, if Eve can somehow predict the next transmission fre-
quency, she can also synchronizes her jammer to hop to the new f at the
same time as Alice and Bob. In the basic scheme we are using a PRNG to
generate the sequence of channel numbers and thus the predictability of f is
directly tied to the predictability of the PRNG used.

It is also worth noting that the period of the PRNG is very important
in this application. New element of a channel number sequence is gener-
ated relatively frequently and eventually the sequence repeats. An attack
exploiting the relatively frequently repeating channel number sequence will
be presented in the section Attacks with software-defined radio.

2.2 Hardware requirements

The scheme described here quite general, however there are certain require-
ments for the implementation to be feasible. Firstly we need some way to
to execute the PRNG calculation and data transmission handling. That is
usually achieved by utilizing a general purpose computer, or in the world of
IoT devices, a microcontroller. Secondly, to be able to transmit/receive, we
need a wireless transceiver that operates in the frequency band of interest
(for example 868MHz or 2.4GHz). Obviously, we require that the transceiver
can tune to different frequencies within the band. Depending on the hop in-
terval, we might require that the transceiver is able to tune a frequency very
fast. Needles to say, tuning needs to be controllable by the microcontroller.

Depending on the application and desired data rate, we make require-
ments also on the bandwidth of the usable spectrum. This also affects the
number of channels available for hopping.

3

3 Pseudo-random sequences

This section will be rather brief since there is a lot of articles and information
available on pseudo-random number generators. I will try to explain what
PRNGs are commonly used in frequency hopping applications.

The PRNGs commonly used in frequency hopping applications are rel-
atively simple and more importantly not CPU intensive as the embedded
hardware is not capable of complex computations in real time. Most often
used are linear feedback shift registers (LFSR) with a LFSR polynomial.

Similarly, linear congruential generators (LCG) PRNGs are also used due
to their simplicity. In employing LCG, one needs to choose a good polynomial
to keep the period as long as possible.

On embedded hardware that supports fast AES executed (possibly hard-
ware accelerated) AES256 with appropriate mode can be used to generate
random numbers [4].

4 Synchronization

As mentioned before, Alice and Bob need to share a starting seed s0 for
PRNG they both use. The scheme would not be secure if s0 was fixed and
never changed. Therefore we need to change s0 and distribute it securely
to Alice and Bob before they establish a transmission. That implies that
we need to implement a protocol for key exchange to generate and exchange
the s0 between Alice and Bob as securely as possible, with consideration for
hardware limitations that we are facing in a certain setup.

I will assume that both Alice and Bob have a pre-shared key kpsk that
is securely stored (I will not cover physical security in this paper) and I will
assume that physical access to the devices in question is not within reach of
the attacker.

In the simplest form, synchronization is done on a predefined frequency
fsync. Alice generates a random number, either by using some form of PRNG
or by using a hardware backed random number generator exploiting some
physical phenomena. In either case Alice generates a random number xsync

and encrypts it, using for example AES and the locally stored kpsk as key to
obtain

ysync = enc(xsync, kpsk)

for example:
ysync = AES256CBC(xsync, kpsk)

Encryption algorithm can also be something else, as long as it provides
reasonable security. When dealing with IoT devices, asymmetric ciphers

4

might be too computationally complex to satisfy the real-time nature of
wireless communications. That is why I would suggest using AES (more
specifically AES256-CBC), as some microcontrollers include hardware accel-
eration for it.

Encrypted message ysync is then sent from Alice to Bob on frequency
fsync. Bob receives ysync and decrypts it

x′
sync = dec(ysync, kpsk)

and uses x′
sync as s0, the seed for frequency hopping PRNG. Alice does the

same thing after receiving confirmation message from Bob. This scheme
would suffice to establish a frequency hopping transmission between Alice
and Bob.

There is, however, an issue. The synchronization frequency fsync is fixed
and can facilitate another attack vector. Eve can jam fsync and prevents
synchronization to succeed, effectively preventing Alice and Bob from com-
municating.

One important aspect of synchronization is resynchronization. This should
be done periodically to prevent PRNG to reach its period and to prevent Al-
ice’s and Bob’s timing to drift too much and inhibit the transmission.

4.1 Preventing DoS during synchronization

We need to extend the scheme for synchronization to prevent or at least make
DoS attacks less feasible. There already is a way to prevent jamming once
Alice and Bob are synchronized - we use wide range of frequencies instead of
just one that is fixed. That idea can be modified to fit the synchronization
scheme as well. Bob would randomly pick a channel number and correspond-
ing frequency fsync from a subset of channels

chnssync ⊂ chnstrans

that are normally used for transmission. Alice would then also pick a random
channel from the same subset and try to synchronize with Bob. If Alice picked
the wrong channel, she would simply repeat the process and randomly select
another. Each time Alice would succeed with the probability of

P (sync) =
1

|chnssync|

On average this would take |chnssync| iterations. This gives as a clue: number
of synchronization channels should be kept relatively low (to allow for a

5

fast synchronization), but still high enough to make guessing it hard (at
least in the time needed for synchronization) to avoid being jammed during
synchronization process.

There is still one detail to address: how do we pick/obtain elements of
chnssync. This can be a function of either the shared secret kpsk or we can
have a dedicated PRNG for generating elements of chnssync and its seed value
would be a function of kpsk. Most important is that both Alice and Bob use
the same deterministic way to obtain the subset.

5 Encrypted sequences

To combat the (relatively) predictable nature of PRNGs, the article [1] sug-
gests using a form of encryption over the generated channel number

c′i = enc(ci, kj) mod nch

where kj is the key used for symmetric encryption algorithm. The channel
number c′i would then be used instead of ci to determine the operating fre-
quency. I propose a simple extension of the scheme by using a PRNGs, like
LFSR to generate keys for encryption kj at each hop. This would require
Alice and Bob to have a separate PRNG with its own starting seed for gener-
ating keys. Synchronization protocol would be extended to provide a random
starting seed for this PRNG as well.

In the article [1] we can find algebraic evaluation of the scheme and also
results of simulations when such a scheme is employed.

6 Attacks with software-defined radio

The scheme described is quite secure to jamming attacks and interference,
but let us consider a more incognito attack - eavesdropping. It has been
said that Eve the attacker can not tune and listen if she does not know the
operating frequency. This premise is true if Eve can observe sufficiently small
chunk of spectrum at any given time. That is, Eve is not able to tune in
if frequency is changing enough such that the next observed hop is likely to
be outside Eves current spectrum observation window. This criteria is easily
achieved by using very wide spectrum (large channel spacing), however due
to practical reasons it is very infeasible. Also there are hardware interface
cards used in the field of software-defined radio that can observe the spectrum
with bandwidth up to 60 MHz. This is very likely to cover most of if not
all of the spectrum available for transmission on a certain frequency band.

6

With these SDR (software-defined radio) devices it is possible to record
and store the raw data from the air. Eve can use this to record the transmis-
sion and then find where the transmission was taking place at any given time
and effectively reconstruct the transmission without hopping. This is done
by observing where are peaks of energy in the spectrum. That would allow
her to then listen to the reconstructed stream (without hops) and obtain the
data transmitted.

This could be fixed by Alice and Bob by encrypting the data before
sending it. It would require more CPU power (which is limited) and might
increase latency in time sensitive applications. Also if the encryption scheme
used is not secure enough, Eve could break the encryption. It also adds
complexity to the system.

7 Dual streams

We have seen in the previous section that wideband SDR devices can allow
the attacker to reconstruct the transmission by detecting the spectral power
and tuning to that frequency. This attack assumes that there is only one
transmitter with similar power active at any given time. If there were two
transmitters, it would become very difficult to distinguish which time slot /
hop belongs to which transmitter. There is still a way to carefully observe
the timing as two distinct transmitters would not be synchronized.

Under careful consideration of this difficulty for the attacker, we can use it
to our advantage. Alice can use two transmitters, one for the actual stream
of data, and one for decoy. It is of paramount importance that the two
transmitters are synchronized and use very similar output power and other
parameters. The goal here is that they are indistinguishable by the attacker.
If we can achieve this, then we obtain a very powerful tool to protect the
transmission.

The extended scheme would then be almost the same as before, we just
use two instances of PRNGs and channels and feed each transmitter with
this. Synchronization is just extended to send another set of PRNG seeds
from Alice to Bob.

7.1 Security

Extended scheme is different from the attackers point of view. If the two
transmitters are indistinguishable (apart from transmit frequency) then Eve
would have to choose which transmitter is the one carrying the data. The
important thing to notice here is that the probability of choosing the next

7

correct signal (of the two) is 1
2
. This is very good for Alice and Bob as it

means that in order to reconstruct the whole transmission, it is exponentially
hard to obtain the right order of chunks. And more interestingly, it grows
with the number of hops:

P (correctly choosing signals) =
1

2Nhops

We can make shorter hops (and thus more hops in the same time) and increase
the security even more. A crucial requirement here is also that Eve is not
able to distinguish which chunk is the real data and which one the decoy.

This scheme should also allow for some form of forward secrecy, even if
Eve captures the whole spectrum to her disk and then later analyzes this
offline.

7.2 Considerations

It is worth considering that using dual streams (dual transmitters) is also
less practical. It costs more to obtain two transmitters, it is an engineer-
ing challenge to synchronize them, and nevertheless consume twice as much
power as a single transmitter. Also only half as many distinct users can use
the available spectrum, so it is important to consider weather or not to use
such a scheme in very crowded and/or limited environment.

8 Conclusion

In this paper I have presented frequency hopping as a way of securing wireless
communications from jamming (DoS) attacks and partially form eavesdrop-
ping. I have presented a relatively simple scheme and its weaknesses and
offered two extensions: encrypted channel numbers and dual transmitters.
Each has its benefits and its drawbacks and it depends on the goals and
implementations which scheme to use. One can obtain a relatively secure
scheme by implementing both extensions.

I would have also liked to present more on how commercial wireless com-
munication devices employ similar schemes but have failed to do so as man-
ufactures go to great lengths to hide their proprietary implementations. It
would present a challenge and maybe yield an interesting paper on analyzing
these commercial systems, but this is out of scope for this seminar paper.

In conclusion, frequency hopping schemes are a good way to prevent
jamming attacks and therefore enable coexistence of many such devices.

8

References

[1] Ebrahimzadeh, Amirhossein, and Abolfazl Falahati. ”Frequency Hopping
Spread Spectrum Security Improvement with Encrypted Spreading Codes
in a Partial Band Noise Jamming Environment.” Journal of Information
Security 4, no. 1 (2013): 1.

[2] Capkun, Srdjan. ”Uncoordinated Frequency Hopping Spread Spectrum.”
In Encyclopedia of Cryptography and Security, pp. 1346-1346. Springer
US, 2011.

[3] Emek, Yuval, and Roger Wattenhofer. ”Frequency hopping against a pow-
erful adversary.” In International Symposium on Distributed Computing,
pp. 329-343. Springer Berlin Heidelberg, 2013.

[4] Atmel Inc., ”Random Number Generation Using AES”, URL: http://
www.atmel.com/Images/article_random_number.pdf, Accessed: 2017-
02-07

9

http://www.atmel.com/Images/article_random_number.pdf
http://www.atmel.com/Images/article_random_number.pdf

	Intro
	Frequency hopping
	Weaknesses
	Hardware requirements

	Pseudo-random sequences
	Synchronization
	Preventing DoS during synchronization

	Encrypted sequences
	Attacks with software-defined radio
	Dual streams
	Security
	Considerations

	Conclusion

