
Elliptic Curves in restricted computational environment

Martin Beránek

Czech Technical University – Faculty of Information Technologies

January 31, 2017

Contents
1 Introduction 2

2 Elliptic Curves 2
2.1 Operations . 3
2.2 Definition of infinity . 3
2.3 Elliptic Curves as Abelian group . 3

3 Application 4
3.1 Elliptic Curve Diffie Hellman . 4
3.2 Elliptic Curve Encryption Scheme . 4

4 Double-and-add 4

5 Galois finite field 5
5.1 EC over GF (2n) . 5

6 Mathematical operations 5
6.1 Addition and subtraction . 5
6.2 Multiplication . 6
6.3 Squaring . 7
6.4 Inversion . 7

7 Special domains 8
7.1 Projective coordinates . 8
7.2 Normal base . 8
7.3 Montgomery multiplication for GF(p) . 9

8 Conclusion and further reading 11

List of Figures
1 Comparison of bit utilisation in different schemes [1] . 2
2 Example of Elliptic Curves . 2
3 Example of Elliptic Curves point addition . 3
4 Multiplication modulo F (a) = a6 + a+ 1 . 6
5 Squaring over GF (2m) . 7

List of Tables
1 Operations utilization in one step of Enhanced Euclidean Algorithm 8
2 Comparison of ITT with square-and-multiply [2] . 9

1

Abstract
This paper should provide basic overview of field algorithms which are used for Elliptic Curves compu-

tations. It focuses on fields used in small devices – Smart Cards, Arduino, . . . Basic overview is given with
comparison of complexity based on common hardware architectures.

1 Introduction
Elliptic Curves are modern technique for cryptography. They are used in large number of operations – from
signatures to encryption. Very promising is the size of used keys which have the same security level as its
amount of used bits. That could lead to bigger application in devices with smaller memory capacity. Elliptic
Curves are currently used in large scale because of preferred higher level of security [3]. This paper provide basic
overview of fields which are used for Elliptic Curves operations. Algorithms should give reader basic knowledge
how to implement Elliptic Curves in small scale hardware environment (Smart Cards, Arduino, . . .).

2 Elliptic Curves
Elliptic Curves are algebraic structure which creates finite group. Property of and finite order creates a space of
points which can be used in manner of discrete operations. Every coordinate of point in space of Elliptic Curve
actually provide much shorter representation in compare of still largely used spaces in RSA. As it is mentioned
in figure 1 the security level of bits which are able to be later used is much higher for Elliptic Curves than for
other cryptographic systems.

Figure 1: Comparison of bit utilisation in different schemes [1]

In pure mathematical point of view, real Elliptic Curve in continuous way is defined as followed [4]:

Definition 2.1. Elliptic Curve (EC) over real numbers R is a set of points satisfying the Weierstrass equation:

y2 = x3 + a · x+ b;x, y, a, b ∈ R

4 · a3 + 27 · b2 6= 0

along with point in infinity O

Figure 2: Example of Elliptic Curves

2

Reason why for Elliptic Curves use just half of its key size is because only one dimension of point (X or Y)
is used in real encryption. From 2 there is clear relationship that each point for fixed dimension of X have at
the best case two Y possibilities. That’s why only one of dimension is used.

In following manner we can derive operations on Elliptic Curve. As it was mentioned, for computations we
use only set of points on curve. For this we can define addition and multiplication with constant.

2.1 Operations
Basic operation with points on Elliptic Curve is addition. It’s defined in following manners:

Definition 2.2. Point addition of Elliptic Curve is defined as R = P + Q where R,P,Q ∈ EC as P =
[Xp, Yp];Q = [Xq, Yq] with result in R = [Xr, Yr]. Then

Xr = λ2 −Xp −Xq;Yr = (Xq −Xr)λ− Yq

where

λ =


Yp−Yq

Xp−Xq
for P 6= Q(addition)

3·X2
q+a

2·Yq
for P = Q(doubling)

Graphical representation of point addition for P 6= Q would be constructed with intersection of line with
curve. From intersection the square line towards Y negative part of curve.

Figure 3: Example of Elliptic Curves point addition

2.2 Definition of infinity
For defining identity in Elliptic Curve space special point in infinity is developed. It have meaning of zero or one
in identity kind of way and as well as infinity. In practical point of view, the point of infinity could be defined
as something known which is by the definition in the curve space but wouldn’t fit Weierstrass condition.

IEEE standard [4] recommends multiple points which should be considered as point in infinity. For affine
coordinates point of O is [0, 0] which have also practical point of view. As well as for curves where b = 0 the point
is defined as O = [0, 1]. Since in projective kind of way the transformation is provided by Xa → xp, Ya → yp, 1
which give projective point of zero as O = [0, 0, 1].

Point of infinity have the meaning of providing following operations:

P +O = O+ P = P

2.3 Elliptic Curves as Abelian group
We already defined identity. Elliptic space actually follow all the properties of the Abelian group. Axioms are
defined as follow:

• Associativity: (P +Q) +N = P + (Q+N) for ∀P,Q,N

3

• Identity: P +O = O+ P = P for ∀P,Q

• Commutativity: P +Q = Q+ P for ∀P,Q

3 Application
As the Elliptic Curves offer finite space of usable points, via usage of operations numerous use cases can be
derived [5]. Application is so wide that Elliptic Curves can provide key exchange, encryption and signature. In
this paper, only encryption and key exchange is mentioned.

3.1 Elliptic Curve Diffie Hellman

As it was mentioned before the elliptic space provides group. That’s why Diffie Hellman [6] algorithm can
be used over Elliptic Curves. Suppose that Alice and Bob have the same Elliptic Curve and both publicly
exchanged same point P ∈ EC. They both create random integer number k which is private and used once
(nonce).

Alice:

1. Choose random Ka

2. Count Ka · P = A

3. Alice send A to Bob

4. Counts Ka ·B = Q

Bob:

1. Choose random Kb

2. Count Kb · P = B

3. Bob send B to Alice

4. Counts Kb ·A = Q

Where as secret is used only Qx.

3.2 Elliptic Curve Encryption Scheme
Similar algorithm can be derived for encryption [5]. Suppose that Alice and Bob have the same Elliptic Curve.
In this scheme acts like somebody who wants to encrypt the message and Bob as somebody who wants to
decrypt it later on:

Alice:
Creating keys:

1. From EC take ord(p) = n

2. Choose d ∈ Z∗
n

3. Compute Q = d · P

4. Publish public key: P,Q, n
and keep private key: d

Encryption:

1. Choose random k ∈ Z∗
n

2. Count k · P = (x1, y1)

3. Count k ·Q = (x2, y2)

4. And publicly provides following set
C = (x1, y1 mod 2,m · x2 mod p)

Bob:
Decryption:

1. Receive set C = (x, b, Z)

2. Create point of R = (x = x, y = b)

3. Counts m = Z · x−1
0 mod p

4 Double-and-add
In terms of point multiplication by constant, which is used in all mentioned algorithms above, the special algo-
rithm should be used. Of course for k·P =

∑k
i=1 P . . . can be used. But complexity of this approach is unreason-

able high. Partial speed up of scheme is to use Double-and-add algorithm which copy Multiply-and-square
algorithm but uses operation from Elliptic Curves space.

Algorithms for N · P , where N ∈ N follow this steps:

4

TMP = P
RESULT := 0
for i from 0 to m do:

if N_i == 1 then:
RESULT := add_points(Q, TMP)

TMP := double_point(TMP)
return Q

So at maximum there is O(blog2(d)c) addition and O(blog2(d)c) doubling.

5 Galois finite field
As it was mentioned earlier, operation of Elliptic Curves is actually composite of multiple other operations over
different fields. The most natural one seems to be mod p where p ∈ P for having clear definition how to count
inversions and other operations. But let’s take in count fields as Galois polynomials, which can provide much
needed changed perspective in additions [7].

Definition 5.1. Notation Fpm or GF (pm) which have finite number of elements pm

• p – characteristic prime

• m – degree m ∈ N

• pm – order

There are special cases as GF (p) where m = 1 which is the same as modulo operation.

5.1 EC over GF (2n)

Naturally, implementation of Elliptic Curves as GF (p) would be the most common solution. But for GF (2n)
polynomials we can ease up addition operation. With different Galois field we also need to redefine some
equations which are now different due to nature of GF (2n).

Definition 5.2. Weierstrass equation over GF (2n):

y2 + xy = x3 + a · x2 + b mod F (α)

Where also points operation is quite different:

Definition 5.3. For R = P +Q where R,P,Q ∈ EC as P = [Xp, Yp];Q = [Xq, Yq] with result in R = [Xr, Yr]
over GF (2n) with mod F (α). Then

Xr = a+ λ2 + λ+Xp +Xq;Yr = (Xq +Xr)λ+Xr + Yq

where

λ =


Yp+Yq

Xp+Xq
for P 6= Q(addition)

Xq +
Yq

Xq
for P = Q(doubling)

6 Mathematical operations

6.1 Addition and subtraction
If we take in count just GF (2n) we actually have addition only over mod 2 which end up only to XOR operation.
That have complexity over all bits O(log2(n)), which is much bigger estimate since normal processor usually
provide single cycle for XOR of word size (32bits, . . .).

Algorithm would go as follow:

for i from 0 to m:
R[i] := P[i] XOR Q[i]

Where R is resulting number for input P and Q.
For GF (p) we always have take in account fact of overflowing numbers. If we consider basic addition, we

would still need to wait for the last flowing bit. Some solutions are given for this problem (for example parallel
adding as PPS accumulation [8]), yet speed up is never bigger than just XOR of numbers.

5

6.2 Multiplication
With GF (2m) multiplication in hardware provide real speed up if used proper LSFR [9]. With that we can state
algorithm which will reduce every step of MSB multipliers:

C := 0
for i := m - 1 to 0:

C := C a mod F(a) + b_i A;

Figure 4: Multiplication modulo F (a) = a6 + a+ 1

This approach is not really fast in software. For each step of algorithm modulo operation would take much
more time then hardware implemented LSFR alternative. That’s why with for LSB multiplication only the result
will be reduced. Algorithm would go as follow:

C := 0
for i := 0 to number size:

j := 1
if B & j == 1:

add (C, A)
shiftLeft A
j <<= 1

return C

This is really complex approach since in every step there is one shift usually over huge number. That could
be speed up with shifting wisely. Consider size of word in given processor. For small devices it could be only
up to 8 bits. That mean that for example 160 bits would be saved in array of 20 bytes. Shifting in each step
over all of them would take impossible amount of time. That’s why is shifting done only 8 times and there is
no need to count overflows. In each step of algorithm there would be considered just one particular bit of each
byte [4]. Algorithm would go as follow:

C[20] := 0
j := 1
for k = 0 up to k < 8:

for i = 0 up to i < 20:
if B[i] & j

add C A
j <<= 1
shiftLeft A

return C

This approach actually works on GF (p) and GF (2m) with exception of difference in addition operation
algorithm. In normal GF (p) there would be much more waiting on overflowing bits. Also, as was mentioned
earlier, there is going to be huge delay on reduction after multiplication.

6

6.3 Squaring
If we consider GF (2m) we can obtain really fast squaring which is based on a following:

Let’s have polynomial x which would give us after square x2. With that let’s investigate polynomial x + 1
which gives x2 + 1 (we are in GF (2m) where coefficients are modulo 2). This emerging patter actually works
based on Binomial distribution [10]. So we can actually state following picture:

Figure 5: Squaring over GF (2m)

With that we can construct algorithm with lookup table for each square x, x2, . . . and latter add them in
final result.

lookup_table[9] = {
0 -> 0000 0000 // as well for 3,5,6,7
1 -> 0000 0001
10 -> 0000 0100
100 -> 0001 0000
1000 -> 0100 0000

}
R := 0
k := 0
for i := 0 up to SIZE of input:

R[k] XOR = lookup_table[a[i] & 1]
R[k] XOR = lookup_table[a[i] & 2]
R[k] XOR = lookup_table[a[i] & 4]
R[k] XOR = lookup_table[a[i] & 8]
k += 1
R[k] XOR = lookup_table[a[i] & 1]
R[k] XOR = lookup_table[a[i] & 2]
R[k] XOR = lookup_table[a[i] & 4]
R[k] XOR = lookup_table[a[i] & 8]
k += 1

Complexity of this algorithm is now linear opposite to quadratic which would be used in normal multiplica-
tion.

6.4 Inversion
In affine space for both GF (2n) and GF (p) inversion is provided as Enhanced Euclidean Algorithm [4]. Opera-
tions are edited according to the field on where are used. For simplicity let’s use number of steps for inversion
as O(log10(n)) as upper boundary. Euclidean algorithm goes as follow:

t := 0; newt := 0
r := modulo_group_n; newr := input_number
while newr not zero:

q := r / newr # whole number division
t := newt
newt := t - q * newt
r := newr
r := r - q * newr

if r > 1:
"a is not invertible"

if t < 0:

7

t := t + n
return (inverse_a := t)

From that we can again estimate number of operation which is used in every step of algorithm:

Table 1: Operations utilization in one step of Enhanced Euclidean Algorithm
Operation Count

Multiplication 2

Addition/substraction 2

Whole number division 1

With exception of last addition. That would seem to state that getting faster multiplications and additions
would provide much needed speed up.

7 Special domains

7.1 Projective coordinates
We just stated how many operations are used during affine space inversions. Even though Enhanced Euclidean
Algorithm is used, opposite to other operations it’s the most time demanding. Solution would be to transform
affine coordinates to projective in form of [x, y] → [X = x, Y = y, Z = 1]. Conversion back to the affine space
is provided as [X,Y, Z] → [x

Z2 ,
y
Z3]. Where Z coordinate play a role of common denominator [9]. That means

during counting inversions we have constant complexity. Basic overview is provided in IEEE 1363 with all the
operations required for the point operations. In closer look into the description of projective space, we need to
consider that with counting Z other computation needed to be done and complexity with that rised for other
operations as well.

7.2 Normal base
Normal base have very large potential to speed up some operations. For example squaring is just one shift
operation [5]. That’s why in this paper is mentioned how to use normal base in Elliptic Curves field.

Definition 7.1. Normal basis is a set of form: B = α, α2, α22 , . . . , α2m−1

Since elements are base, adding up subsets can’t create 0 (elements are linear independent). There exist
normal basis for every GF (2m).

The GF (2m) is represented as in normal basis in following string form:
(a0a1a2 . . . am−1) as element combined out of normal base
a0α+ a1α

2 + a2α
22 + · · ·+ am−1α

2m−1

Normal base works on GF (2m) field. There is no change in addition over normal base. More interesting
operation is squaring which actually rely on following property:

A = (a0a1a2 . . . am−1) = a0α+ a1α
2 + a2α

22 + · · ·+ am−1α
2m−1

A2 = a0α
2·20 + a1α

2·21 + · · ·+ am−1α
22·m−2

+ am−1α
2·2m−1

Where for am−1α
2·2m−1

we can use Little Fermat theorem and have just am−1α
20 and put in begging of this

additive form:

am−1α
20 + a0α

21 + a1α
22 + · · ·+ am−2α

2m−1

That actually means following:

A2 = (am−1a0a1a2 . . . am−2)

So in normal basis the squaring is just rotational shift with constant complexity. Of course even the bit shift
over big amount of bytes could be complex because of overflowing bits. Yet for hardware it’s just a matter of
right wiring.

Another fast operation would by multiplication for which we need multiplicative matrix M. Algorithm is
defined as follow:

8

A := (a0 a1 a2 ... a{m-1})
B := (b0 b1 b2 ... b{m-1})

C := 0
for i := 0 to m - 1:

ci := A . M . transposed(B)
A := LeftShift(A)
B := LeftShift(B)

So for input A, B we are getting multiplication of both in form of C. Matrix M needs to be determined for
the basis which is used. Since algorithm uses multiplication of matrices, general rule is to find matrix M with
the smallest number of ones. That in best cases means to find out matrix containing 2m− 1 non zero elements.

Problem with normal basis is no fast inversion calculation. Only known rule is to use Little Fermat theorem.
So for finding inversion of a the a2

m−2 ≡ a−1 need to be counted. That is computationally hard problem. One
of the solution was provided by Itoh, Teechai & Tsujii [11]. It utilize the fact that binary representation of
2m − 2 is 1111 . . . 11110.

Algorithm takes as input pr, pr−1, . . . , p0 which is binary representation of m−1 and A for which it returns
A−1.

C := A
k := 1
for i := r down to 1

B := C
for j := k down to 1

B := B*B
C := B*C
k := 2k
if pi-1 == 1:

C := C * C * A
k += 1

return(C*C)

To compare efficiency of algorithm, we can see how fast would be same operation with square-and-multiply.

Table 2: Comparison of ITT with square-and-multiply [2]
Clock cycles

ITT ≈ 1.5m log(m)

square-and-multiply ≈ 0.5m2

7.3 Montgomery multiplication for GF(p)
Another promising field for counting over GF (p) is Montgomery field. It’s effectivity is not provided by the
number of used operations but with usage of operation which are not that expensive [9].

Definition 7.2. Number a = |aR|m [1] is called m-residuum where numbers a are numbers of Montgomery
field – Montgomery domain. Where R > m and is the least power of base of positional power system.

To provide example for numbers of R let’s stay in numbers of base 10. For example if m = 78→ R = 100,
if we switch to binary form m = 11→ R = 16 since we are not able to fit 11 under the next lower R = 8.

With this we can provide addition which is actually same as it is for basic GF (p) hence it’s use current given
architecture:

c = a+ b = ||aR|m + |bR|m|m = |(a+ b)R|m
Multiplication is provided as follows:

c = |abR−1|m
From that we can easily provide backwards transformation:

1Consider operation |A|m as A mod m, this notation is used by Ing. Róbert Lórenz, CSc. from CTU, only convenience for this
notation is that it’s faster to write

9

a = |a · 1 ·R−1|m
Algorithm for multiplication can be done in linear complexity in number of bits of base R. It is defined as

follow:
Let’s have an input R = 2n, Mont(a) = (a), Mont(b) = (b) and m.

s := 0; i := 0
while (i < n)

x := x + Mont(a_i)Mont(b)
x := (x + x0 m)/2
i := i + 1

if x >= m:
x := x - m

Where x is |a · bR−1|m. That also mean algorithm actually counts out x in decimal base.
Another very promising algorithm is Montgomery inversion:
Input is a, b ∈ Z; a > b > 0 where a is an odd and n is number of bits of a.

Phase 1:

u := a; v := b;
r := 0; s := 1;
k := 0
while v > 0:

if u even:
u := u/2
s := 2*s

else if v even:
v := v/2
r := 2*r

else if (u > v):
u := (u - v)/2
r := r + s
s := 2*s

else:
v := (v - u)/2
s := r + s
r := 2*r

k := k + 1
if u not 1

return a,b are not relative primes

if r >= a:
r := r - a

Phase 2:

while k > n
if r even:

r := r / 2
else:

r := (r + a)/2
k := k - 1

return (inv(b) 2^n % n = a - r)

Considering both algorithms mentioned above, there is common pattern. Both use operations, which are
very hardware efficient. Although we can see multiplication and division by two, it can be interpreted as shift
operations. The most complex operations are additions and subtractions.

10

8 Conclusion and further reading
This paper provided basic overview of methods used for operation with points on Elliptic curves. Main difference
in algorithms can be found in usage of Galois fields which can be GF (p) or GF (2m). Another approach is to
work in affine space or projective which speed up usage of inversion. These are all factors to be considered based
on hardware platform where the Elliptic curves should be implemented. Some hardware support fast addition
with flag on overflow, some support better XOR. With information about the platform, reader can find in here
which algorithm would be more suitable.

There is plenty of topics which haven’t been touched in this paper. One of them is definitely problem of
side channels which touches the basic structure of hardware. Algorithm Double-and-add is fairly good readable
with power analysis. In case of algorithms, there is plenty more solutions for inversions in both GF (p) and
GF (2m) [12]. The way of development in this field is targeting hardware based solution. Therefore more
architectural based methods should be covered, since Elliptic curves are easily implemented in hardware.

References
[1] Paar, C.; Pelzl, J. Understanding Cryptography: A Textbook for Students and Practitioners. Springer

Berlin Heidelberg, 2009, ISBN 9783642041013. Available from: https://books.google.si/books?id=
f24wFELSzkoC

[2] Novotny, M. Arithmetics with Normal Basis. Slides for subject MI-BHW. Available from: https://edux.
fit.cvut.cz/courses/MI-BHW/_media/lectures/elliptic/mi-bhw-09-gfarithmetic.pdf

[3] OpenSSL. Elliptic Curve Cryptography. Available from: https://wiki.openssl.org/index.php/
Elliptic_Curve_Cryptography

[4] IEEE Standard Specifications for Public-Key Cryptography. IEEE Std. 1363-2000, 2000, doi:10.1109/
IEEESTD.2004.94612.

[5] Hankerson, D.; Menezes, A.; Vanstone, S. Guide to Elliptic Curve Cryptography. Springer Professional
Computing, Springer New York, 2006, ISBN 9780387218465. Available from: https://books.google.cz/
books?id=V5oACAAAQBAJ

[6] Rescorla, E. Diffie-Hellman Key Agreement Method. RFC 2631, RFC Editor, June 1999. Available from:
https://tools.ietf.org/html/rfc2631

[7] Benvenuto, C. J. Galois Field in Cryptography. 2012. Available from: https://www.math.washington.
edu/~morrow/336_12/papers/juan.pdf

[8] Tvrdík, P. Parallel algorithms and computing. CTU, 2003, ISBN 80-01-02824-0. Available from: http:
//aleph.nkp.cz/F/?func=direct&doc_number=001023210&local_base=SKC

[9] Guajardo, J.; Güneysu, T.; Kumar, S. S.; et al. Efficient Hardware Implementation of Finite Fields with Ap-
plications to Cryptography. Acta Applicandae Mathematica, volume 93, no. 1, 2006: pp. 75–118, ISSN 1572-
9036, doi:10.1007/s10440-006-9072-z. Available from: http://dx.doi.org/10.1007/s10440-006-9072-z

[10] Granville, A. The Arithmetic Properties of Binomial Coefficients I. 1996. Available from: http://www.
cecm.sfu.ca/organics/papers/granville/Binomial/toppage.html

[11] Itoh, T.; Tsujii, S. A Fast Algorithm for Computing Multiplicative Inverses in GF(2M) Using Normal
Bases. Inf. Comput., volume 78, no. 3, Sept. 1988: pp. 171–177, ISSN 0890-5401, doi:10.1016/0890-5401(88)
90024-7. Available from: http://dx.doi.org/10.1016/0890-5401(88)90024-7

[12] Hlavác, J.; Lórencz, R. Arithmetic Unit for Computations in GF(p) with the Left-Shifting Multiplica-
tive Inverse Algorithm. In Architecture of Computing Systems - ARCS 2013 - 26th International Con-
ference, Prague, Czech Republic, February 19-22, 2013. Proceedings, 2013, pp. 268–279, doi:10.1007/
978-3-642-36424-2_23. Available from: http://dx.doi.org/10.1007/978-3-642-36424-2_23

11

