Cryptography and Computer security
Classifying classical ciphers using random forest

Rok Ivansek, ISRM, II
February 7, 2017

Abstract

When encrypting a plaintext into a ciphertext, the idea is to hide the actual content of the underlying
message, thus making it unreadable for a potential harmful adversary. Ciphertexts are therefore “gibberish”
texts that do not show any structure that would resemble a natural language. Despite this fact, we can
still find patterns in the ciphertexts. The patterns are clearer, when the underlying encryption rule is more
transparent, like in the case of classical ciphers. In this report I show that we can use this patterns to match
a set of ciphertexts to the corresponding cipher. By carefully engineering features we can use a random
forest technique to train a classifier model that is able to classify ciphertexts of classical ciphers.

Introduction and related work

In my work I followed the typical data science pipeline. Getting the data, cleaning it, engineering features,
doing some exploratory data analysis, training and tuning the model and in the end interpreting results and
extracting information. In this domain classification has been attempted for classical substitution ciphers
using a neural network [I1], modern block ciphers like DES, 3DES and AES using support vector machines [4].
Another approach was used in [8] for both classical and modern ciphers. In [9] different methods were combined
to classify modern block and stream ciphers and a clustering study was done for ciphers from the finalists of
the AES contest in 2000 [3].

Data

Plaintexts

For my plaintexts I randomly choose 1000 texts from the 20 Newsgroups dataset. I used the preprocessed
dataset from |Ana Cardoso Cachopo| [2]. The preprocessing made on original texts from the 20 Newsgroups
dataset was:

substitute TAB, NEWLINE and RETURN characters by SPACE;,
keep only letters (that is, turn punctuation, numbers, etc. into SPACES),
turn all letters to lowercase,

substitute multiple SPACES by a single SPACE,
the title/subject of each document is simply added in the beginning of the document’s text.

In addition to the preprocessing already made, I took out the white spaces and trimmed the texts to length
of 500 characters. This way I got 1000 strings of length 500, each representing a part of a randomly selected
text from the dataset. This strings were my plaintexts used in the analysis.

Ciphertexts

To encrypt the plaintexts I used the python library pycipher [7]. To make the classification task as represen-
tative as possible, I tried to choose a variety of different ciphers. Including some that would produce similar
ciphertexts, like the Permutation and Caesar cipher and some whose ciphertexts are clearly distinguishable
from each other, like the ADFGVX and the Vigenere cipher. While encrypting the key of the cipher was always
chosen randomly out of all possible combinations, except where stated differently. I encrypted each plaintext
with every chosen cipher. This way I got 6000 cipherthexts, a 1000 for each of the chosen ciphers. I ended up
choosing the following ciphers.

In the description of the ciphers I will always assume that = = (x1,3,...,%,,) is a plaintext consisting of
m integers from Zsog which map to letters in the english alphabet.

http://ana.cachopo.org/datasets-for-single-label-text-categorization

Rok Ivansek ISRM, II

Affine cipher

The affine cipher is in essence a standard substitution cipher, meaning that each letter encrypts to one other
letter. The key are integers a and b. The encryption rule is

e(x;) = (ax; +b) (mod 26), Vi

where a is relatively prime to 26 and b is an arbitrary integer in range 0 — 25.

Vigenere cipher

The Vigenere cipher originates from the 16th century. It encrypts the ciphertexts in blocks of n characters.
For a chosen keyword K = (k1, ks, ..., ky) of length n < m, it encrypts the plaintext following the rule

e(r1, T2, ., Tm) = (1 + k1, 2 + ko, ooy Ty + kny Tie1 + k1, ooy Ton + ki, Tonar + k1, -00),

where all + operations are done (mod 26).

ADFGVX cipher

The ADFGVX was a field cipher used by the German Army during World War 1. It uses a modified Polybius
square and a single columnar transposition to encrypt the plaintext. The complete procedure of encryption is
too long to describe in this report. The important properties of this cipher are that it uses only the letters
A,D,F G,V and X in the ciphertexts and the ciphertext is two times as long as the plaintext.

Caesar cipher

The Caesar cipher is one of the earliest known and simplest ciphers. It is a shift cipher that shifts all the letters
in the plaintexts by a key value k. It can be viewed a special case of the Vigenere cipher, where the key is of
length 1. The encryption rule is

e(z;) = (z + k) (mod 26), Vi.

Permutation cipher

Also called the simple substitution cipher, it has been in use for many hundreds of years. It basically consists
of substituting every plaintext character for a different ciphertext character. It differs from the Caesar cipher
in that the cipher alphabet is not simply the alphabet shifted, it is completely jumbled. The key for this cipher
is simply a jumbled alphabet. For example a key k = AJPCZWRLFBDKOTYUQGENHXMIV S would
impose the following encryption rule

ABCDEFGHIJKLMNOPQRSTUVWXYZ - AJPCZWRLFBDKOTYUQGENHXMIVS,

meaning a letter in the left string would encrypt into a letter in the right string that is in the same place. For
example M would encrypt to T'.

Playfair cipher

The Playfair cipher is a digraph substitution cipher from the 19th century that was also used in the World War
1 by the British forces. It encrypts pairs (digraphs) of letters using a key square. Again the full description of
the encryption is too long to include in this report.

Feature engineering

In order to express patterns in the ciphertexts I had to come up with interesting features. A feature is in essence
any property of the ciphertexts that can be expressed in a qualitative or a quantitative way. The features that
I decided to use are closely related to the properties of the ciphers I choose. They are mostly quantitative
measurements that are used, when one attempts to break the chosen ciphers.

Rok Ivansek ISRM, II

Distribution of letters

The first most simple group of features one can extract is the distribution of letters. This just means that we
count, how many times each letter appears in the ciphertext. This way we obtain 26 features, one for each
letter in the alphabet. Using only this simple group of features we would already be able to distinguish between
some of the ciphers that use only a subset of letters from the alphabet, like the ADFGVX from other ciphers
that use the whole alphabet.

300 affine ADFGVX

300

250 F

2001

100F -

10—

ABCDEFGHI JKLMNOPQRSTUVWXYZ ABCDEFG

Figure 1: Average distribution of letters in the ciphertexts for the Affine cipher (left) and the ADFGVX cipher
(right).
Adjacent duplicates

Another simple feature that proved to be efficient in a similar ciphertexts classification task [I1] is the number
of adjacent duplicates. It is particular useful when recognizing the Playfair cipher, since this cipher should have
a substantially lower number of adjacent duplicates than other ciphers, due to its encryption rule.

Number of adjacent duplicates

log(count)

ADFGVX affine ceasar permutation playfair vigenere

Figure 2: Logarithm of the average number of adjacent duplicates for the used ciphers.

Repeating bigrams

In a classical text classification an n-gram (usually a bigram) is a sequence of n adjacent tokens in a text.
Tokens can be words, syllables or letters. Using bigrams of letters I extracted two features. First was the
number of unique bigrams that repeat at least once in a ciphertext and second was the frequency of the most
frequent bigram in a ciphertext.

Rok Ivansek ISRM, II

Number of repeating bigrams.
T T T T

Frequency of the most frequent bigram.
T T T T

350 ,
300f

250 F

count

1500
200k oo

(70| SRRSO S

ADFGVX affine ceasar permutation playfair vigenere ADFGVX affine ceasar permutation playfair vigenere

Figure 3: Average number of unique repeating bigrams (left) and the average frequency of the most appearing
bigram (right) in the ciphertexts.

Index of coincidence

Index of coincidence (IC) along with Kasiski’s test is used in breaking the Vigenere cipher. It tells us the
probability that we will get two matching letters, if we randomly select two letters from a given text. The
formula for calculating the IC for a text x is

25

_ fi(fi—1)
1C(z) = ; m7

where f; are the frequencies of letters in x and d is the length of x.

Index of coincidence.
T T

0.20 . .

0.05---

ADFGVX affine ceasar permutation playfair vigenere

Figure 4: Average index of coincidence.

The IC of an English plaintext is approximately 0.065. The Affine, Caesar and Permutation ciphers are
examples of single letter substitution ciphers, where the mapping that determines the encryption of letters is
bijective (one-to-one). It is therefore no surprise that the IC of their ciphertexts is the same as the IC of the
English plaintexts.

Exploratory data analysis
One common step before moving on to actual training of the model, is to draw some rough graphs representing
the data that will be used for training. This is to see how features interact with each other and to get an idea

of how the data clusters.

Here 1 present just one graph to show that the chosen features separate the data in a clear way. I use a

Rok Ivansek ISRM, II

subsample of 10% of the data. The features were scaled zero mean and unit variance, and then multidimen-
sional scaling was used to shrink down the data to two dimensions.

Il ADFGVX

mm affine

B ceasar

B permutation

Em playfair
vigenere

-8
-10 -5 0 5 10 15

Figure 5: MDS(multidimensional scaling) used on a subsample of the data.

From graph [f] we can see how the ADFGVX cipher is clearly separated from the others. Vigenere and
Playfair appearing in the inner circles are also separable from the other ciphers, while the Affine, Caesar and
Permutation cipher all lay mixed together in the outer most circle. This is an encouraging sight. It tells us
that the classifier should produce good results.

Random forest classifier

Random forest is an ensemble method. It works by building multiple simple decision trees on different sub-
samples of the data and than combining the results produce a stronger model. It can be used for classification
or regression. I will not go into detail about the workings of the decision tree and random forest techniques,
since this is a broad topic and it is not the main focus of this report. I advise the reader to learn more in [IJ.
For now it suffices to say that this is a robust machine learning technique that works well on different domains
in data science. The main parameter of the random forest is the number of decision trees built. It generally
holds that more is better and we usually just build as much trees as our computing capabilities allow us, but
the accuracy of the model is expected to stop improving substantially at some point.

Accuracy score
T T T

0.90

Percantage of samples correctly classified

0.82 i i L i i L i
10 50 100 500 1000 2000 3000 4000 5000

Number of descision trees

Figure 6: Determining the optimal number of decision trees in the random forest.

On graph [6] we can see how the accuracy score of the random forest changes as we increase the number of
decision trees in the forest. We can see that the accuracy of the model does not change significantly for more
that 2000 decision trees. The score was calculated on the training set using a 5-fold cross validation.

Rok Ivansek ISRM, II

Results

Training a random forest on the train set of the data, building 2000 decision trees, I obtained an average
accuracy of around 92% on the test set.

precision recall fl-score support

ADFGVX 1.00 1.00 1.00 195
Affine 0.73 0.77 0.75 182
Caesar 0.91 0.99 0.95 212
Permutation 0.83 0.75 0.79 210
Playfair 1.00 1.00 1.00 208
Vigenere 1.00 0.95 0.98 193
avg/total 0.91 0.91 0.91 1200

Table 1: Classification report showing the main classification metrics.

Table [I] shows some of the more common classification metrics for one specific run on the random forest
classifier. Precision tells us the fraction of samples classified as some class that actually belong to this class,
while recall or sensitivity tells us the fraction of samples from some class that were classified to be in this class.
Example: All of the samples predicted to be Vigenere, were in fact Vigenere so the precision for the Vigenere
class is 1.00, however 9 of the Vigenere samples were predicted to be Caesar so the recall is only 0.95. The
f1l-score is the harmonic mean of precision and recall, calculated with the formula F; = 2% and
support simply tells us how many samples of the class were in the test set. Table[2] shows the confusion matrix
of the classification.

ADFGVX | Affine | Caesar | Permutation | Playfair | Vigenere
ADFGVX 195 0 0 0 0 0
Affine 0 141 11 30 0 0
Caesar 0 1 210 1 0 0
Permutation 0 44 0 166 0 0
Playfair 0 0 0 0 208 0
Vigenere 0 0 9 0 0 184

Table 2: Confusion matrix of the classification.

We can see that the samples of ADFGVX and Playfair ciphers were all correctly classified and only 9 out
of the 196 samples of the Vigenere cipher were classified as a Caesar cipher. The classifier however had some
problems with the classification of the Affine, Caesar and Permutation ciphers. Out of 182 samples of the Affine
cipher in the test set, 11 were classified as Caesar and 30 as Permutation. Out of 212 samples of the Caesar
cipher, 1 sample was classified as Affine and 1 as Permutation. Lastly out of 210 samples of the Permutation
cipher, 44 were classified as Affine.

Comments

The classification results are encouraging. Using a limited number of fairly simple features we are able to build
a model that exhibits an average classification score higher that 90% and is able to distinguish even between
ciphers that use similar encryption rules.

Framework

For this project I used the Python programming language. I used Pycipher library [7] to encrypt the plaintexts
and Scikit-Learn library [I0] to sample the data, train/tune the model and interpret the results. For the
generation of graphs I used the Matplotlib library [5]. For the description of the ciphers I relied on lecture notes
from the subject Cryptography and Computer Security taught by prof. Jurisi¢ at the Faculty of Informatics,
practical cryptography website [6] and Stinson’s book [12].

Rok Ivansek ISRM, II

References

[1] Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

[2] Ana Cardoso-Cachopo. Improving Methods for Single-label Text Categorization. PdD Thesis, Instituto
Superior Tecnico, Universidade Tecnica de Lisboa, 2007.

[3] William AR de Souza, Allan Tomlinson, and Luiz MS de Figueiredo. Cipher identification with a neural
network.

[4] Aroor Dinesh Dileep and Chellu Chandra Sekhar. Identification of block ciphers using support vector
machines. In Neural Networks, 2006. IJCNN’06. International Joint Conference on, pages 2696—2701.
IEEE, 2006.

[5] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90-95,
2007.

[6] James Lyons. Practical cryptography. http://practicalcryptography.com/. Accessed: 2017.

[7] James Lyons. pycipher. https://github.com/jameslyons/pycipher} 2016.

[8] Pooja Maheshwari. Classification of ciphers. PhD thesis, Indian Institute of Technology, Kanpur, 2001.

[9] Shivendra Mishra and Aniruddha Bhattacharjya. Pattern analysis of cipher text: A combined approach.
In Recent Trends in Information Technology (ICRTIT), 2013 International Conference on, pages 393-398.
IEEE, 2013.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

[11] G Sivagurunathan, V Rajendran, and T Purusothaman. Classification of substitution ciphers using neural
networks. International Journal of computer science and network Security, 10(3):274-279, 2010.

[12] Douglas R Stinson. Cryptography: theory and practice. CRC press, 2005.

http://practicalcryptography.com/
https://github.com/jameslyons/pycipher

