
Attacks on ElGamal

Tihana Britvić, 70078007
University of Ljubljana, Faculty of Mathematics and Physics

Abstract
In this paper, the ElGamal cryptosystem will be defined
and analyzed in term of attacks. Three types of attacks
will be described: brute force, meet-in-the-middle and
two table attack. Furthermore, almost all of them hold
discrete log as a base, so it will also be described. This
project continues on knowledge that we gain in Cryptog-
raphy and Computer Security course.

1 Introduction

Public key cryptosystems have an elegant mathematical
simplicity, but simple implementations are often inse-
cure. Because of this, I will describe several attacks on
ElGamal which work well when the encrypted message
is short is not been preprocessed. The attacks on ElGa-
mal depend on the parameters, which are commonly used
in practical implementations, and are also used while cre-
ating the cryptosystem. The formalization of an idea of
what makes a secure cryptosystem is a popular subject
among computer scientists. Formal definitions are some-
times a bit stronger than necessary for practical security
regarding that many cryptosystems used in practice do
not satisfy the formal definitions. ElGamal cryptosystem
implementation is something that is often referred to in
this context.

2 ElGamal Cryptosystems

ElGamal is a public key system which uses modular
exponentiation as the basis for a one-way trapdoor
function. The reverse operation is the so-called discrete
logarithm and is considered to be intractable. ElGamal
was never patented, making it an attractive alternative to
the more well known RSA system. Public key systems
are fundamentally different from symmetric systems
and typically demand much larger keys. 1024 bits is the
minimum recommended size and for some applications,

even larger keys are recommended. We will now
persume, for simplicity, that an ElGamal cryptosystem
operates in a finite cyclic group with multiplicativity.
The two most common choices are:

1. the group of integers from 1 to p−1 under multipli-
cation mod p, where p is a prime number. Notation:
Z∗p.

2. subgroups of Z∗p that have the prime order. With
ord(g) the order of an element g in Z∗p is denoted,
and with < g > the cyclic subgroup of Z∗p generated
by g is denoted.

2.1 The Discrete Log Problem
The discrete logarithm is defined as the inverse of mod-
ular exponentiation: given a modular exponentiation y =
gx in Z∗p with the base g, the discrete logarithm loggy is
x. This is a discrete logarithm in the cyclic group < g >
and it may or may not be the whole Z∗p. When ord(g) = n
is large and has at least one large prime factor, discrete
log problem in < g> is considered intractable. There are
three basic types of discrete log algorithms:

1. square-root algorithms (i.e. Pollard’s rho algorithm)

2. the Pohlig-Hellmen algorithm

3. index calculus algorithms

Pollard’s rho algorithm can compute discrete logs in a
cyclic group of prime order n in O(

√
n) and negligible

space. If n is not prime and the factorization of n is
known, then the Pohlig-Hellman algorithm can be used.
If the factorization of n is given with n = pe1

1 pe2
2 ...pek

k ,
then the Pohlig-Hellman algorithm computes partial so-
lutions by computing discrete logs in subgroups of or-
der pi for i = 1, ...,k. Typically Pollard’s rho algo-
rithm is used as a subroutine to compute these loga-

rithms, and the partial solutions are combined to com-
pute the requested discrete log. The runtime of Pohlig-

Hellman is O(
k
∑

i=1
ei(logn +

√
pi)). If n is a B-smooth

number, meaning that none of it’s prime factors are
greater than B, the runtime of the Pohlig-Hellman algo-
rithm is O(lnlnn(logn +

√
B). When Pollard’s rho al-

gorithm is used with the Pohlig-Hellman algorithm, the
combined algorithm also uses negligible space. If n has
a large prime factor neither of these algorithms work
well. Index calculus algorithms do not work in a gen-
eral cyclic group, but they do work in Z∗p and they run in
sub-exponential time. Also, they do not work directly on
subgroups of Z∗p, but they can be used to compute logs in
subgroups by computing logs in Z∗p. For this reason, if
n << p then a square-root algorithm such as Pollard rho
(or Pohlig-Hellman if n is composite) may be faster than
index calculus methods, depending on the exact relation-
ship between n and p.

2.1.1 Encryption and Decryption

We can represent ElGamal cryptosystem with a 4-tuple
(p,g,x,y) where p is a large prime number that group
Z∗p is being represented with, g is an element of Z∗p such
that ord(g) = n, random x ∈ [1,n− 1] and y = gx. The
tuple (p,g,y) is called a public key, while x is called
private key. In addition to the public key, a random
integer k ∈ [1,n − 1] is used in encryption function:

Ek(m) = (gk,myk).
Decryption function is defined with:

D(u,v) = u−xv.
All the operations are done in mod p. The decryp-
tion function will recover the original message:

u−x = g−kx = (gx)−k = y−k

and
D(Ek(m)) = u−xv = y−kmyk = m.

2.1.2 Security

It is important to choose n, p very large because if we re-
cover private key x, we can decrypt all messages. Since
the public key includes y (y = gx) and g, finding a pri-
vate key equal to computing a single discrete logarithm
in < g >. For example, if we are using Pollard’s rho
algorithm then n determines the runtime of square-root
discrete logs, while if using index calculus p determines
the runtime of the discrete log. Recommended minimum
for p is 1024. If n < p−1, then n should be large enough
such that discrete log algorithms take at least O(

√
n). To

break a single cipher (u,v) = (gk,myk) we need to find
y−k. Since m = vyk and we can compute inverses effi-
ciently, we only need yk. Cracking a ciphertext is equiv-
alent to the Diffie-Hellman problem that states:

”Given gk and y = gx, determine gkx = yk”. Since a dis-
crete log can be used to solve the Diffie-Hellman prob-
lem, it is not more difficult than the discrete log problem.

3 Attacks

3.1 Brute Force Attacks

Brute force attacks is a class of attacks on cryptosystems
that can be characterized with exhaustive searching and
very little ingenuity. For example: recovering a plaintext
from a ciphertext by decrypting the ciphertext with ev-
ery possible key. This attack is often possible if the real
plaintexts contain structured data. Decrypting a cipher-
text using the wrong key will likely produce a false plain-
text which has a roughly uniform distribution of bytes.
Decryptions with irregular distributions are more likely
to be the correct plaintext.
If we look at brute force attack on ElGamal cryptosys-
tem, there are n− 1 possible values for private key x. If
we are given the ciphertext (that was encrypted using a
64-bit key from plaintext), we could decrypt it using each
value of the private key. Even if n << p−1 there will be
few decryptions. So, if we take n = 256bits, it requires
O(2256) modular exponentins, which is intractable.
We could instead compute all possible encryptions of all
possible messages until one is found which matches the
ciphertext. However, this is even worse. If n is 256 bits
and the message is a 64-bit key, then we must compute
at most 264(n− 1) encryptions, so the attack will take
O(2320) encryptions, each taking two modular exponen-
tiations. If ElGamal is used as part of a hybrid cryptosys-
tem, the actual data is encrypted with a symmetric cipher
using the session key. In this case, it will likely be easier
to attack the symmetric cipher directly. If we have some
way of recognizing real plaintexts, we can decrypt the ci-
phertext with all 264 possible session keys until we find a
decryption that looks like plaintext. This attack requires
O(264) symmetric cipher decryptions and plaintext tests,
which is orders of magnitude faster than the other brute
force attacks.

3.2 Meet-in-the-middle

3.2.1 Requirements and Assumptions

For this attack we assume that the adversary has inter-
cepted a ciphertext (u,v) and knows which public key
(g, p,y) was used to encrypt the message. Only the sec-
ond part v = myk of ciphertext is used.
The attack works well under following conditions:

1. The original message m is at most b bits, where b is
small, and the adversary is aware of this limit.

2

2. m can be factored (split) into two factors of at most
b1 and b2 bits respectively.

3. n = ord(g) ∈ Z∗p is known. If p− 1 has only one
large prime factor, then it can be factored efficiently
using a combination of trial division, Pollard’s rho
algorithm for factoring, and primality testing. In
that case, or if the factorization of p− 1 is already
known and n can be computed efficiently.

4. Messages are not represented as elements of < g >.
For ElGamal to work, the messages must be repre-
sented with members of Z∗p.

5. n < (p−1)2−b. This ensures that given an element
vn such that ord(vn)| p−1

n in Z∗p, the expected number
of distinct messages m such that mn = vn is very
small.

Since we assumed that message splits in some way, the
attack will not always work. For example,if we have a
56 bit message and we choose parameters b1 = b2 = 28,
the probability of success equals to 18%.

3.2.2 The Attack

ElGamal cryptosystems are non-deterministic, which
means that encryption of the same plaintext multi-
ple times results in different ciphertexts (due to ran-
domness of k). However, the term yk is non-
deterministic and it states that ord(yk)|n, so if we
raise v = myk to the n power we can eliminate yk:

vn = mn(yk)n = mn(gxk)n = mn(gn)kx = mn

Note: There can be a message m̃ such that m̃n = vn.
However if the message is a 56-bit session key and mod-
ular exponentiations can be computed in one microsec-
ond, this search will take over 1000 years on average.
This is where the splitting assumption comes into play.
We limit our search to message m̃ which can be factored
as m̃ = m̃1m̃2 where m̃1 < 2b

1 and m̃2 < 2b
2. In that case:

vn = m̃n = m̃1
nm̃2

n and vnm̃−n = m̃1
n.

The idea of the attack is to compute m̃1
n for m̃1

n =
1...2b1 , store the (key, value) pairs (m̃1

n, m̃1) in a dic-
tionary, and then compute vnm̃2

−n for m̃2 = 1...2b2 and
look up the values in the dictionary. If a match is found,
it means that vnm̃2

−n = m̃1
n, so m̃ = m̃1m̃2 is a candidate

for the original message. The dictionary depends only on
the public key and b1, so it can be re-used for multiple
messages. If every message is represented as a member
of < g >, then vn = 1 for every for every message. and
this attack fails completely.

3.2.3 Solution Collisions

If m̃ ∈ Z∗p then ord(m̃n)| p−1
n . Given vn, we wish

to calculate the number of expected messages m̃ not

equal to the actual message m such that m̃n = mn =
vn. Let Xc be be the random variable representing this
quantity. We will assume that there are 2b possible
messages and that the values m̃n for m̃n = 1...2b are
roughly uniformly distributed in the subgroup of order
p−1

n . In that case, m̃n = vn with probability 1
p−1

n
=

n
p−1 . Xc then has a binomial distribution with proba-
bility n

p−1 and 2b − 1 trials. If n < (p− 1)2−b then

E[Xc] = (2b−1)(n
p−1)< (2b)((p−1)2−b

p−1) = 1
The attack will only find splitting messages, so the actual
expected number of collisions is E[Xc] times the split-
ting probability. For example, if p− 1 is 1024 bits ,
n is 512 bits, and b = 64 (message has 64 bits), then
E[Xc]∼ 2−448.

3.2.4 Implementation

The attack is fairly straight forward so we need a suit-
able data structure for the dictionary. It needs to support
efficient insert and search routines, so the most obvious
choices are to use a hash table or sorted array. Instead
of inserting into a data structure, we simply store all the
(key, value) pairs in the array as we generate them and
sort the array (by the keys) at the end. Lookup is im-
plemented in O(logn) using binary search. The sort will
require O(nlogn) operations, but the operations are much
faster than the modular exponentiations used to generate
the array keys. The space requirement is also very low:
O(1) with heapsort and O(logn) with a clever implemen-
tation of quicksort, for example.

3.2.5 Reducing space requirements

Reducing the size of the dictionary will allow us to crack
larger message without being forced to use slow exter-
nal storage. For example, if b = 64 and we choose
b1 = b2 = 32, and each entry in the dictionary requires
s bytes, the dictionary will require 4s gigabytes. If
p is 1024 bits, then most elements of Z∗p in particular
m̃1

n take up 128 bytes. The values of m̃1 however, are
only 4 bytes each. This means that if we store entire
(m̃1

n, m̃1) pairs in the array, the dictionary will require
over 512GB. This is not going to fit in system mem-
ory. If we store (hash(m̃1

n), m̃1) instead, where hash()
is the suitable hash function. To find unm̃2

−n, we need
to compute hash(unm̃2

−n) and then do a binary search.
Since hash() will likely have collisions the search may
find multiple possible values for m̃1. For each match, we
recompute m̃1 and test for equality with unm̃2

−n. If the
number of matches is much less than 2b2n, the extra expo-
nentiation calculations required will not make not make
a significant contribution to the run time. The expected
number of matches depends on the size of the hash val-

3

ues. Suppose the hash values are h bits and assume
that the values of hash(m̃1

n) are uniformly distributed
over interval [0,2h − 1]. The probability of hash(m̃2

n)
matches a specific element in the table for given value of
m̃2 is 2b1−h, and the total number of expected matches is
2b22b1−h = 2b−h, where b−h << b2. This implementa-
tion requires 36GB to store the dictionary when b1 = 32.

3.2.6 Running Time and Memory Usage

No matter is we are using hash dictionary or not, the
attack requires O(b12b1) sorts. The space requirement
is 2b1 table entries. They both require O(2b2) binary
searches of the table, each running in O(log2b1) = O(b1)
time, which gives us total complexity of O(b12b2).

3.2.7 Comparison to Brute Force

The most effective brute force attack on a hybrid system
is usually a direct attack on the symmetric cipher. If a
b-bit key is used, then the expected runtime is O(2b).
If b1 = b2 = b

2 , then the runtime of meet-in-the-middle

attack will be O(2
b
2+1). For example, if b = 56,b1 =

b2 = 28, brute force runtime will take 255.

3.3 Two table attack
3.3.1 Description

The two table attack is a refinement of the meet-in-the-
middle attack which works when Z∗p has a subgroup in
which discrete logs can be computed efficiently. This
attack uses discrete logarithms in the pre-computation
phase to replace modular exponentiation with additions
in the message cracking phase. Again the adversary
requires only the second part v = myk of the ciphertext
and the public key (p,g,y). All the requirements and
assumptions of the basic meet-in-the-middle attack
apply to this attack as well, except that now we require
s > 2b to ensure that the expected number of solution
collisions is small. A splitting assumption is still used,
so b1 and b2 can be chosen for a different time, space,
and success probability trade-offs.

3.4 The attack
Let p− 1 = nrs, where s is easily factorable using trial
division, and we can therefore efficiently find an ele-
ment α ∈ Z∗p that generates the subgroup of order s. In-
stead of raising v to the n power, we raise v to the nr
power. If a ∈ Z∗p,(a

nr)s = ap−1 = 1, so anr ∈< α >
such that ord(< α >) = s. With this we can com-
pute the discrete logarithm with base α . Lets sup-
pose that m̃1 and m̃2 are factors of m̃ with bit size b1

and b2, respectively. If v is a ciphertext for m̃, then:
v = ykm̃ = ykm̃1m̃2

vnr = (yk)nrm̃1
nrm̃2

nr

vnr = m̃1
nrm̃2

nr

logvnr = logm̃1
nr + logm̃2

nr

where log has base α . For the pre-computation step,
we build two tables T1 and T2 where T1 contains pairs
(logm̃1

nr, m̃1) for m̃1 = 1...2b1 , and T2 contains pairs
(logm̃2

nr, m̃2) for m̃2 = 1...2b2 . When we try to crack the
message, we want to find two pairs (t1,v1) and (t2,v2)
from the tables such that logvnr = t1+ t2mods. If we find
such pair, we have found candidate (v1,v2) for plaintext.
Under the conditions, this solution will be unique with
high probability and m = v1v2. The task of expressing
an integer as the sum of k other integer different tables
is called the k-table problem. Lets look at the case when
k = 2. The basic idea for solving the two table problem
is to sort both tables by the first coordinate - T1 in as-
cending order and T2 in descending order - then test if
the heads of each list sum to the target, and if not ad-
vance the head pointer on one of the lists according to
whether the sum was larger or smaller than the target.
However, here we wish to find equality mods, so we re-
quire some modifications. We still sort T1 in ascending
order and T2 in descending order, which would be done
in the pre-computation phase. Let t = logvnr be the tar-
get, and note that the problem can be rephrased as find-
ing (t1,v1) and (t2,v2) in T1 and T2, respectively, such
that t1 = t− t2mods. For a fixed t, we can define a virtual
table T

′
2 from T2 containing the values (t − t2mods,v2)

for each (t2,v2) ∈ T2. The smallest element of T
′

2 will
not necessarily be at the first position, but the T

′
2 will

still be in circular order. However since we subtract el-
ements it will be in ascending circular order. Note that
if t2 = t + 1 ∈ T2, then t − (t + 1)mods = s− 1 will be
the largest element in T

′
2 . We perform a binary search

for t + 1 ∈ T2, and if t + 1 is found we return the index.
If t + 1 is not found, the binary search will have zeroed
in on the indexes between which t + 1 would occur if it
were present. The smaller of these indexes will give us
the smallest element t2 ∈ T2 greater than t + 1, and the
corresponding element t− t̂2 ∈ T

′
2 will be the largest el-

ement of T
′

2 . The following element will be the smallest
element e.g. if t is in T2, then t − t = 0 is the smallest
element in T

′
2 . Having determined the structure of T

′
2 ,

our task is to find elements (t1,v1) in T1 and (t
′
2,v2) in

T
′

2 such that t1 = t
′
2. We compare the target t to the sum

of the heads of T1 and T
′

2 . If head T1 is less than head
T
′

2 , then we advance the head pointer of T1. If they’re
equal we have found a potential solution. Otherwise we
advance the head of T

′
2 .

4

3.4.1 Solution Collisions

If there are 2b possible messages and we assume that the
values of vnr are uniformly distributed in the subgroup of
order s, then the expected number of solution collisions
E[Xc] will be: E[Xc] = (2b− 1)(nr

p−1) = (2b− 1)(1
s). In

particular if s > 2b then E[Xc] < 1. Again the actual ex-
pected number of collisions will be E[Xc] times the split-
ting probability associated with the b1 and b2 used for
the attack.

3.4.2 Implementation

This attack requires a discrete log algorithm which works
well in a group of smooth order. For example, we can use
Pohlig-Hellman algorithm together with Pollard’s rho al-
gorithm. Trial exponentiation is used instead of Pollard
rho for very small prime powers. Let us now observe the
case when b1 = b2, then the tables T1 = T2. There is no
need to store multiple copies. If T1is sorted in ascending
order, we can treat it as a list sorted in descending order
by inverting all comparisons, starting indexing at the end
of the list, and traversing in the reverse order. This will
half the space requirement and half the sorting time.

3.4.3 Running Time and Memory Usage

Let us define bm := max(b1,b2). The pre-computation
step requires 2bm modular exponentiations and 2bm dis-
crete logarithms, and the power for the modular exponen-
tiations is now larger (nr vs n). We, therefore, expect this
pre-computation to run much more slowly than that of
the other attacks but to scale similarly for a fixed smooth
factor s. Cracking a message, on the other hand, is much
faster. We need to compute one modular exponentiation
and one discrete log to compute the target. When search-
ing the tables, will examine at most 2min(b1,b2) candidate
pairs t1, t

′
2. For each candidate pair tested, we compute

t
′
2 = n− t2mods and perform comparison. These opera-

tions are orders of magnitude faster than modular expo-
nentiation when large numbers are involved. If b1 = b2,
T1 = T2 will have 2b1 = 2b2 entries. Each entry is a pair
(loganr,a), where a is at most b1 = b2 bits and the log is
O(logs) bits. Since s may require more bits than the word
size, we may require a large integer type to store loganr.
Note that storing just the hash of the log is not sufficient,
we need the full value. When b1 is not equal to b2, the
size requirement jumps to 2b1 +2b2 table entries.

3.4.4 Three and Four Table Attacks

This attack can be extended to three and four table at-
tacks. These attacks assume the message splits into three
or four factors, so they have much lower probability of
success. However, the four table attack, in particular,

requires far less memory and computation, making the
attack feasible for larger messages.

4 Results

There is no good reason to choose plain meet-in-the-
middle attack implementation over the one that uses hash
function — the size of the hash function can be increased
when b and b1 are large to ensure that the extra computa-
tions required by hashed meet-in-the-middle are insignif-
icant. If hundreds of messages will be attacked and the
conditions for the able attack are met (p-1 has a smooth
factor s with s > 2b), then two table will be faster than
the implementation of meet-in-the-middle-attack using a
hash function, even with exponentiation caching. How-
ever two table uses more memory than the version of
meet-in-the-middle attack with a hash function, so it will
require picking b1 <

b
2 . For this reason, the meet-in-the-

middle attack that uses hash function may be faster when
b is large.

4.1 Protecting Against the Attacks

The most direct way to defeat the attacks discussed in
this paper is to represent messages as elements < g >,
either by choosing g primitive < g >= Z∗p or by de-
signing an easily computable bijective mapping between
messages and the proper subgroup < g >. However de-
scribes a meet-in-the-middle attack which works when
n = p− 1 and n has a smooth factor at least as large as
the message. This demonstrates that meet-in-the-middle
methods can work even when all messages are in < g >.
With the proper choice of parameters, ElGamal is conjec-
tured to be semantically secure - a popular formal defini-
tion of security. n is chosen to be a large prime such that
p= 2n+1 is also prime, and the base g is selected to have
order n as usual. The cyclic subgroup < g > will then be
the group of quadratic residues mod p, and representing
messages as members of this group is relatively easy. If
these parameters are used, and messages are represented
as quadratic residues, the resulting cryptosystem is con-
jectured to be semantically secure assuming that the Dis-
crete Log problem in Z∗p (and in < g >) is intractable.
Perhaps more importantly, the cryptosystem will not be
vulnerable to the meet-in-the-middle attacks discussed in
this paper and in. Another way of defeating these at-
tacks is pre-processing the message. For example, we
can simply pad short messages to say 128 bits, making
the attacks infeasible. The modular exponentiation dom-
inates encryption, so having a larger message to multiply
will not significantly impact performance. However, the
reader should be wary of such a simplistic approach.

5

5 Conclusion

Implementing a cryptosystem securely requires far more
than an understanding of the basic algorithm. The im-
plementer must be aware of possible attacks on the sys-
tem and choose keys and parameters to make those at-
tacks infeasible. This paper discussed attacks which
rely on the underlying mathematics - however, timing at-
tacks have been discovered against various cryptosystem
which gains information based on how long the computer
takes to perform encryption or decryption operations.
Secure implementation is difficult, and using an existing
implementation which has already undergone extensive
public review should always be preferred over creating a
new implementation.

6 References

1. Stinson: Cryptography Theory And Practice, 3rd
edition, University of Waterloo, Ontario Canada,
2006.

2. Allen, Implementing several attacks on plain ElGa-
mal encryption, Iowa State University , 2008.

3. Abdalla, Bellare, Rogaway: An encryption scheme
based on the Diffie-Hellman problem, Tech. Report
99-07, 1999.

4. Menezes, Vanstone, Van Oorschot, Handbook of
applied cryptography, CRC Press, Inc., Boca Raton,
FL, USA, 1996.

6

